Железные руды. Виды железных руд – общая характеристика железняков Мартитовые руды

Задавшись вопросом - для чего нужна железная руда становится понятно, что без нее человек не достиг бы высот современного развития цивилизации. Орудия труда и оружие, детали машин и станки – все это можно сделать из железной руды. Сегодня нет ни одной отрасли народного хозяйства, обходящейся без стали или чугуна.

Железо относится к широко распространенным в земной коре химическим элементам. В земной коре этот элемент в чистом виде практически не встречается, он находится в виде соединений (окислов, карбонатов, солей и прочего). Минеральные соединения, в которых содержится значительное количество этого элемента, называют железными рудами. Промышленное использование руд, содержащих в своем составе ≥ 55% железа экономически обосновано. Рудные материалы с меньшим содержанием металла подвергаются предварительному обогащению. Методы обогащения при добыче железных руд постоянно совершенствуются. Поэтому, в настоящее время, требования к количеству железа в составе железной руды (бедной) постоянно снижаются. Руда состоит из соединений рудообразующего элемента, минеральных примесей и пустой породы.

  • руды, образовавшиеся под действием высокой температуры, называют магматогенными;
  • образовавшиеся в результате оседания на дне древних морей – экзогенными;
  • под действием экстремального давления и температуры – метаморфогенными.

Происхождение породы определяет условия добычи полезных ископаемых и в каком виде содержится железо в них.

Главная особенность железных руд – их широкая распространенность и очень значительные запасы в земной коре.

Основные железосодержащие минеральные соединения это:

  • гематит – это наиболее ценный источник железа, так как содержит порядка 68-72% элемента и минимум вредных примесей, залежи гематита называют красным железняком;
  • магнетит - главное свойство железной руды данного вида – магнитные свойства. Наравне с гематитом отличается содержанием железа равным 72,5%, а также высоким содержанием серы. Образует месторождения - магнитные железняки;
  • группа водных окислов металла под общим названием бурые железняки. Эти руды имеют невысокое содержание железа, примеси марганца, фосфора. Это определяет свойства железной руды данного типа – значительную восстанавливаемость, пористость структуры;
  • сидерит (карбонат железа) – отличается высоким содержанием пустой породы, самого металла содержится порядка 48%.

Применение железной руды

Железная руда используется для выплавки из нее чугунов, сталистого чугуна и стали. Однако, прежде чем, железную руду используют по назначению, она подвергается обогащению на горно-обогатительных комбинатах. Это относится к бедным рудным материалам, содержание железа в которых ниже 25-26%. Разработано несколько методов обогащения бедных руд:

  • магнитный способ, он заключается в использовании различий магнитной проницаемости компонентов руды;
  • флотационный способ, использующий различные коэффициенты смачиваемости частиц руды;
  • промывочный способ, удаляющий пустые примеси струями жидкостей под большим давлением;
  • гравитационный способ, применяющий специальные суспензии для удаления пустой породы.

В результате обогащения из железной руды получают концентрат, содержащий до 66-69% металла.

Как и где используется железная руда и концентраты:

  • руда используется в доменном производстве для выплавки чугунов;
  • для получения стали прямым способом, минуя стадию чугуна;
  • для получения ферросплавов.

В итоге, из полученной стали и чугуна изготавливаются профильный и листовой прокат, из которых потом изготавливают необходимые изделия.

Железная руда - это горная порода, в состав которой входит естественное скопление разных минералов и обязательно, в том или ином соотношении, присутствует железо, которое можно выплавить из руды. Компоненты, входящие в состав руды могут быть самыми разнообразными. Чаще всего, она содержит следующие минералы: гематит, мартит, сидерит, магнетит и другие. Количественное содержание железа, содержащееся в руде, неодинаковое, в среднем оно колеблется от 16 до 70 %.

В зависимости от количества содержания железа в руде, ее делят на несколько типов. Железная руда, содержащая в себе более 50 % железа, называется богатой. Обычные руды в свой состав включают не менее 25 % и не более 50 % железа. Бедные руды имеют небольшое содержание железа, оно составляет всего лишь четвертую часть от общего количества химических элементов, входящих в общее содержание руды.

Из железных руд, в которых находится достаточное содержание железа, выплавляют , для этого процесса ее чаще всего обогащают, но могут использовать и в чистом виде, это зависит от химического состава руды. Для того чтобы произвести , необходимо точное соотношение определенных веществ. Это влияет на качество конечного продукта. Из руды могут выплавлять и использовать по назначению и другие элементы.

В целом, все месторождения железных руд разделяют на три главные группы, это:

Магматогенные месторождения (образованные под воздействием высоких температур);
экзогенные месторождения (образованные в результате отложения осадков и выветривания горных пород);
метаморфогенные месторождения (образованные в результате осадочной деятельности и последующего влияния высокого давления и температуры).

Эти основные группы месторождений могут в свою очередь подразделяться еще на некоторые подгруппы.

Очень богата месторождениями железной руды. На ее территории содержится более половины общемировых залежей железной породы. К наиболее обширному месторождению относится Бакчарское месторождение. Это один из самых крупных источников залежей железных руд не только на территории Российской Федерации, но и во всем мире. Данное месторождение располагается в Томской области в районе рек Андромы и Иксы.

Залежи руды были здесь обнаружены в 1960 году, во время поиска нефтяных источников. Месторождение раскинулось на весьма обширную площадь, составляющую 1600 кв. метров. Залежи железной руды располагаются на глубине 200 метров.

Бакчарские железные руды богаты железом на 57 %, они также включают в свой состав и другие полезные химические элементы: фосфор, золото, платину, палладий. Объем железа в обогащенной железной руде доходит до 97 %. Общий же запас руды на данном месторождении исчисляется в 28,7 миллиардах тонн. Для добычи и разработки руды от года к году усовершенствуются технологии. Карьерную добычу предполагают заменить скважинной.

В Красноярском крае, примерно в 200 км от города Абакана, в западном направлении, размещается Абагасское месторождение железной руды. Преобладающий химический элемент, входящий в состав здешних руд – это магнетит, его дополняет мушкетовит, гематит, пирит. Общий состав железа в руде не так уж велик и составляет 28 %. Активные работы по добыче руды на данном месторождении ведутся с 80-х годов, несмотря на то, что открыто оно было еще в 1933 году. Месторождение состоит из двух частей: Южной и Северной. Каждый год в этом месте добывают в среднем чуть более 4 млн. тонн железной руды. Общее количество запасов железных руд на Абасском месторождении составляет 73 млн. тонн.

В Хакассии, недалеко от города Абаза в районе Западного Саяна, разработано Абаканское месторождение. Открыто оно было в 1856 году, и с тех пор добыча руды ведется регулярно. За период с 1947 по 1959 года на Абаканском месторождении были возведены специальные предприятия по добыче и обогащению руд. Первоначально добычу вели открытым способом, а позднее перешли на подземный способ, устроив 400-метровую шахту. Местные руды богаты магнетитом, пиритом, хлоритом, кальцитом, актинолитом, андезитом. Содержание железа в них составляет от 41,7 до 43,4 % с добавлением серы и . Уровень ежегодной добычи в среднем равен 2,4 млн. тонн. Общий запас залежей составляет 140 млн. тонн. В Абазе, Новокузнецке и Абакане расположены центры добычи и переработки железной руды.

Курская магнитная аномалия славится своими богатейшими залежами железной руды. Это крупнейший железный бассейн во всем мире. Здесь залегает более 200 миллиардов тонн руды. Эта сумма является весомым показателем, ведь она составляет половину запасов железной руды на всей планете в целом. Располагается месторождение на территории Курской, Орловской и Белгородской областей. Ее границы простираются в пределах 160 000 кв. км, включая в себя девять центральных и южных областей страны. Магнитная аномалия была обнаружена здесь очень давно, еще в XVIII веке, но более обширные залежи руды стало возможным обнаружить только в прошлом веке.

Богатейшие запасы железной руды начали активно добывать здесь только в 1931 году. В этом месте хранится запас железной руды, равный 25 миллиардам тонн. Содержание железа в ней колеблется от 32 до 66 %. Добыча ведется и открытыми, и подземными способами. Курская магнитная аномалия включает в свой состав Приоскольское и Чернянское месторождение железной руды.

Содержание железа в промышленных рудах от 16 до 72%. Среди полезных примесей Ni, Co, Mn, W, Mo, Cr, V и др., среди вредных — S, R, Zn, Pb, As, Cu. железных руд по генезису подразделяются на , и (см. карту).

Основные железные руды

Промышленные типы железных руд классифицируются по преобладающему рудному минералу . Магнетитовые руды сложены магнетитом (иногда магнезиальным — магномагнетитом, нередко мартитизированы — превращены в гематит в процессе окисления). Они наиболее характерны для карбонатитовых, скарновых и гидротермальных месторождений . Из карбонатитовых месторождений попутно извлекают апатит и бадделеит , из скарновых — кобальтсодержащий пирит и сульфиды цветных металлов. Особую разновидность магнетитовых руд представляют комплексные (Fe-Ti-V) титаномагнетитовые руды магматических месторождений . Гематитовые руды, сложенные главным образом гематитом, в меньшей степени магнетитом, распространены в коре выветривания железистых кварцитов (мартитовые руды), в скарновых, гидротермальных и вулканогенно-осадочных рудах. Богатые гематитовые руды содержат 55-65% Fe и до 15-18% Mn. Сидеритовые руды подразделяются на кристаллические сидеритовые руды и глинистые шпатовые железняки; они часто магнезиальны (магносидериты). Встречаются в гидротермальных, осадочных и вулканогенно-осадочных месторождениях. Среднее содержание в них Fe 30-35%. После обжига сидеритовых руд, в результате удаления CO 2 , получают тонкопористые железооксидные концентраты , содержащие 1-2%, иногда до 10% Mn. В зоне окисления сидеритовые руды превращаются в бурые железняки. Силикатные железные руды сложены железистыми хлоритами ( , лептохлорит и др.), сопровождающимися гидрооксидами железа, иногда . Образуют осадочные залежи. Среднее содержание в них Fe 25-40%. Примесь серы незначительна, фосфора до 1%. Часто имеют оолитовую текстуру. В коре выветривания превращаются в бурые, иногда в красные (гидрогематитовые) железняки. Бурые железняки сложены гидрооксидами железа, чаще всего гидрогётитом. Образуют осадочные залежи (морские и континентальные) и месторождения коры выветривания. Осадочные руды часто имеют оолитовую текстуру. Среднее содержание Fe в рудах 30-35%. В бурых железняках некоторых месторождений (Бакальское в CCCP, Бильбао в Испании и др.) содержится до 1-2% Mn и более. В природно-легированных бурых железняках, образовавшихся в корах выветривания ультраосновных пород, содержится 32-48% Fe, до 1% Ni, до 2% Cr, сотые доли процента Co, V. Из таких руд без добавок выплавляются хромоникелевые чугуны и низколегированная сталь. ( , железистые ) — бедные и средние по содержанию железа (12-36%) метаморфизованные железные руды, сложенные тонкими чередующимися кварцевыми, магнетитовыми, гематитовыми, магнетит- гематитовыми и сидеритовыми прослоями, местами с примесью силикатов и карбонатов. Отличаются низким содержанием вредных примесей (S и R — сотые доли процента). Месторождения этого типа обычно обладают уникальными (свыше 10 млрд. т) или крупными (свыше 1 млрд. т) запасами руды. В коре выветривания кремнезём выносится, и возникают крупные залежи богатых гематито-мартитовых руд.

Наибольшие запасы и объёмы добычи приходятся на докембрийские железистые кварциты и образованные по ним богатые железные руды, менее распространены осадочные бурожелезняковые руды, а также скарновые, гидротермальные и карбонатитовые магнетитовые руды.

Обогащение железной руды

Различают богатые (свыше 50% Fe) и бедные (меньше 25% Fe) руды, требующие . Для качественной характеристики богатых руд важное значение имеет содержание и соотношение нерудных примесей (шлакообразующих компонентов), выражающимся коэффициентом основности и кремневым модулем. По величине коэффициент основности (отношение суммы содержаний оксидов кальция и магния к сумме оксидов кремния и ) железных руд и их концентраты подразделяются на кислые (менее 0,7), самофлюсующиеся (0,7-1,1) и основные (более 1,1). Лучшими являются самофлюсующиеся руды: кислые руды по сравнению с основными требуют введения в доменную шихту повышенного количества известняка (флюса). По кремневому модулю (отношение содержаний оксида кремния к оксиду алюминия) использование железных руд ограничивается типами руд с модулем ниже 2. К бедным рудам, требующим обогащения, относятся титаномагнетитовые, магнетитовые, а также магнетитовые кварциты с содержанием Fe магнетитового свыше 10-20%; мартитовые, гематитовые и гематитовые кварциты с содержанием Fe более 30%; сидеритовые, гидрогётитовые и гидрогётит-лептохлоритовые руды с содержанием Fe более 25%. Нижний предел содержаний Fe общего и магнетитового для каждого месторождения с учётом его масштабов , горнотехнических и экономических условий устанавливается кондициями.

Руды, требующие обогащения, подразделяются на легкообогатимые и труднообогатимые, что зависит от их минерального состава и текстурно-структурных особенностей. К легкообогатимым рудам относятся магнетитовые руды и магнетитовые кварцы , к труднообогатимым - железные руды, в которых железо связано со скрытокристаллическими и коллоидальными образованиями, в них при измельчении не удаётся раскрыть рудные минералы из-за их крайне мелких размеров и тонкого прорастания с нерудными минералами. Выбор способов обогащения определяется минеральным составом руд, их текстурно-структурными особенностями, а также характером нерудных минералов и физико-механическими свойствами руд. Магнетитовые руды обогащаются магнитным способом. Применение сухой и мокрой магнитной сепарации обеспечивает получение кондиционных концентратов даже при сравнительно низком содержании железа в исходной руде. При наличии в рудах промышленных содержаний гематита наряду с магнетитом применяется магнитно-флотационный (для тонковкрапленных руд) или магнитно-гравитационный (для крупновкрапленных руд) способы обогащения. Если в магнетитовых рудах содержится в промышленных количествах апатит или сульфиды , меди и цинка , минералы бора и другие, то для их извлечения из отходов магнитной сепарации применяется флотация . Схемы обогащения титаномагнетитовых и ильменит-титаномагнетитовых руд включают в себя многостадиальную мокрую магнитную сепарацию. С целью выделения ильменита в титановый концентрат проводится обогащение отходов мокрой магнитной сепарации флотацией или гравитационным способом с последующей магнитной сепарацией в поле высокой интенсивности.

Схемы обогащения магнетитовых кварцитов включают дробление , измельчение и магнитное обогащение в слабом поле. Обогащение окисленных железистых кварцитов может производится магнитным (в сильном поле), обжигмагнитным и флотационным способами. Для обогащения гидрогётит-лептохлоритовых оолитовых бурых железняков используется гравитационный или гравитационно-магнитный (в сильном поле) способ, ведутся также исследования по обогащению этих руд обжигмагнитным способом. Глинистые гидрогётитовые и (валунчатые) руды обогащаются промывкой . Обогащение сидеритовых руд обычно достигается обжигом. При переработке железистых кварцитов и скарново-магнетитовых руд обычно получают концентраты с содержанием Fe 62-66%; в кондиционных концентратах мокрой магнитной сепарации из апатит-магнетитовых и магномагнетитовых руд железа не менее 62-64%; для электрометаллургического передела выпускаются концентраты с содержанием Fe не ниже 69,5%, SiO 2 не более 2,5%. Концентраты гравитационного и гравитационно-магнитного обогащения оолитовых бурых железняков считаются кондиционными при содержании Fe 48-49%; по мере совершенствования методов обогащения требования к концентратам из руд повышаются.

Большая часть железных руд используется для выплавки чугуна. Небольшое количество служит природными красками (охры) и утяжелителями буровых глинистых растворов .

Запасы железной руды

По запасам железных руд (балансовым — свыше 100 млрд. т) CCCP занимает 1-е место в мире. Наиболее крупные запасы железных руд в CCCP сосредоточены на Украине, в центральных районах РСФСР, в Северном Казахстане, на Урале, в западной и восточной Сибири . Из общего количества разведанных запасов железных руд 15% — богатых, не требующих обогащения, 67% — обогащаемых по простым магнитным схемам, 18% — требующих сложных методов обогащения.

KHP , КНДР и CPB обладают значительным запасами железных руд, достаточными для развития собственной чёрной металлургии. См. также

ГЛАВА 7. ГРУППЫ РУДНЫХ МИНЕРАЛОВ ПО ФИЗИЧЕСКИМ СВОЙСТВАМ. ДИАГНОСТИЧЕСКИЕ СВОЙСТВА ЭТАЛОННЫХ МИНЕРАЛОВ. ТАБЛИЦЫ-ОПРЕДЕЛИТЕЛИ.

СТАНДАРТНЫЕ СХЕМЫ ИССЛЕДОВАНИЯ

РУДНОГО МИНЕРАЛА И АНШЛИФА

Из большого числа рудных минералов можно выделить характерные соединения трех типов: самородные элементы (металлы), сульфиды и подобные им соединения и окислы – соединения металлов с кислородом. Они значительно отличаются по физическим свойствам, что облегчает диагностику.

1. Самородные элементы, такие как, Au, Ag, Fe, Cu, Pt обладают физическими свойствами идеальных металлов, т.е. ковкостью, тягучестью, металлическим блеском (непрозрачностью для света), проводимостью тепла и электричества, высокой плотностью. Свойства их обусловлены, прежде всего, металлическим типом электронной связи между атомами. Тип связи определяет строение кристаллических решеток и оптические свойства. Для рудных минералов важными свойствами являются отражательная способность и твердость. Самородные металлы являются, как правило, наиболее высокоотражающими объектами и имеют низкую твердость. К числу типичных рудных минералов относится также гексагональная модификация самородного углерода – графит, отличающийся низким отражением.

2. Сульфиды, такие как: галенит – PbS, сфалерит – ZnS, миллерит –NiS, киноварь – HgS, пирротин – FeS, ковеллин – CuS – не обладают свойствами металлов. Они в основном хрупкие, слабо проводят электрический ток, обладают средней отражательной способностью, некоторые частично пропускают свет. Электронные связи между химическими элементами, входящими в кристаллические решетки сульфидов, имеют ионный или смешанный типы, что и обусловливает резкое различие их оптических свойств. Многие сульфиды обладают широкой анизотропией физических свойств, в том числе твердости и отражательной способности. В эту группу рудных минералов относятся также многочисленные селенистые, теллуристые, мышьяковистые и сурьмянистые соединения, среди которых много важных в промышленном отношении минералов.

3. Окислы, например магнетит – Fe 2+ Fe 3+ 2 O 4 , гематит – Fe 2 O 3 , рутил – TiO 2 , куприт – Cu 2 O, ильменит – FeTiO 3 , хромит – FeCr 2 O 4 , еще больше отличаются от металлов отсутствием пластичности, электропроводности. Окислы, как правило, отличаются низкой отражательной способностью и высокой твердостью. Многие окислы пропускают свет. Типы химических связей в окислах различны, что обусловливает их широкие различия в физических свойствах.

Роль самородных металлов, сульфидов и окислов в образовании месторождений различна. Самородные металлы исключительно редко образуют месторождения, а сульфиды и окислы являются главными компонентами многочисленных месторождений.

Наиболее важные рудные минералы, образующие месторождения:

Самородные элементы:

Кобальтин – CoAsS

Лëллингит –FeAs 2

Серебро – Ag

Арсенопирит – FeAsS

Золото – Au

Платина – Pt

Блеклые руды: теннантит – Cu 12 As 4 S 13 – тетраэдрит – Cu 12 Sb 4 S 13

Углерод – С (Графит)

Прустит – Ag 3 AsS 3

Пираргирит – Ag 3 SbS 3

Буланжерит – Pb 5 Sb 4 S 11

Сульфиды и подобные им соединения:

Окислы и другие кислородные соединения:

Халькозин – Cu 2 S

Куприт – Cu 2 O

Галенит – PbS

Гематит – α-Fe 2 O 3

Сфалерит – ZnS

Ильменит – FeTiO 3

Киноварь – HgS

Браунит – Mn 2 O 3

Пирротин – Fe 1-x S

Шпинель – MgAl 2 O 4

Никелин – NiAs

Магнетит – FeFe 2 O 4

Миллерит – NiS

Хромшпинелиды – (Mg,Fe)(Cr,Al,Fe) 2 O 4

Пентландит – (FeNi) 9 S 8

Рутил – TiO 2

Халькопирит – CuFeS 2

Касситерит – SnO 2

Борнит – Cu 5 FeS 4

Колумбит – (Fe,Mn)Nb 2 O 6 – танталит – (Fe,Mn)Ta 2 O 6

Кубанит – CuFe 2 S 3

Пиролюзит – MnO 2

Ковеллин – CuS

Лопарит – (Na,Ce,Ca)(Nb,Ti)O 3

Аурипигмент – As 2 S 3

Гетит – гидрогетит

– HFeO 2 ,- HFeO 2 ž ag

Стибнит – Sb 2 S 3

Псиломелан – mMnO ž MnO 2 ž nH 2 O

Висмутин – Bi 2 S 3

Малахит – Cu 2 2

Молибденит – MoS 2

Вольфрамит – (Mn,Fe)WO 4

Пирит – FeS 2

Шеелит – CaWO 4

Сперрилит – PtAs 2

Циркон – ZrSiO 4

К эталонным минералам относятся: пирит, галенит, блеклые руды, сфалерит. Диагностические свойства их приведены в табл. 1.

Таблица 1

Диагностические свойства эталонных минералов

Химический состав

Сингония

Отражение

Серо-белый с оливково-коричневым оттенком

Светло-желтый

Анизотропия

Изотропен

Изотропен

Изотропен

Изотропен

Внутренние рефлексы

Бесцветные, желтые, буро-красные

Коричнево-красные

Отсутствуют

Отсутствуют

Твердость

153–270 кГ/мм 2

308-397 кГ/мм 2

64-110 кГ/мм 2

1374 кГ/мм 2

Полируемость

Посредствен-ная, при длительном полировании хорошая.

Формы зерен, внутреннее строение

Зернистые агрегаты, но индивиды не видны, можно выявить травлением. Характерны полисинтетиче-ские двойники.

Зернистые агре-

гаты, травлением можно выявить зональность в кристаллах.

Зернистые агрегаты, совершенная спайность, треугольные выколки.

Зернистые агрегаты, кристаллы кубических и пентагон-додекаэдрич форм.

Часто встречающиеся совместно минералы

Халькопирит, галенит, блеклые руды, пирротин

Халькопирит, сфалерит, галенит, арсенопирит

Сфалерит, пирит, халькопирит, минералы серебра и др.

Марказит, халькопирит, сфалерит, золото и др.

Магнитность

Немагнитен

Немагнитен

Немагнитен

Немагнитен

Важно усвоить свойства этих минералов, для того чтобы на практике легко их узнавать и использовать для диагностики других минералов. Главное достоинство предлагаемой группы эталонов заключается в широкой распространенности в различных месторождениях, устойчивости их свойств, стандартных цветах, силе отражения и др. Например, уменьшение коэффициента отражения в ряду: пирит-галенит-блеклая руда-сфалерит происходит в интервале 10–15 %, что соответствует интервалу восприимчивости глаза. Это позволяет легко по «методу контакта» ориентироваться в справочных таблицах. Также закономерно возрастает микротвердость в ряду: галенит-сфалерит-блеклая руда-пирит, (от 2.5 до 6.5), что позволяет использовать примитивную схему определения групп твердости по «методу царапания». На примере эталонов усваиваются такие диагностические свойства как эталонные цвета: белый (галенит) и серый (сфалерит), «внутреннее строение» (треугольники выкрошивания у галенита) и «внутренние рефлексы» (сфалерит и блеклая руда) и др.

Свойства других минералов, включенных в курс «Рудная минераграфия» приведены в форме стандартных таблиц-определителей.

Пример работы с таблицей-определителем

В качестве примера рассмотрим таблицу С.А. Юшко и В.В. Иванова (Приложение 4), приведенную в работе С.А. Юшко «Методы лабораторного исследования руд» (1984). Таблица составлена с использованием основных физических свойств рудных минералов, которые студент определяет в лабораторных условиях. Представленные в таблице минералы разбиты на 36 групп в зависимости от свойств.

Рекомендуется, прежде всего, определить характер анизотропии минерала. По этому признаку минералы делятся на две большие группы. Точное определение анизотропности позволит резко ограничить круг поиска минерала.

Далее следует определить степень отражения. В каждой группе как изотропных, так и анизотропных минералов, первая вертикальная графа слева имеет обозначение: «Отражение». Она разделена на три подраздела (снизу вверх): «равная сфалериту и меньше», «равная галениту и меньше» и «больше галенита». Примерное определение коэффициента отражения по эталонам позволяет ограничить поиск минерала до 3-7 групп.

Определение цвета минерала в отраженном свете не представляет большой трудности, но решает еще одну задачу - отделяет «ясно окрашенные» минералы, которых, к примеру, среди анизотропных минералов, не так много. Это свойство обозначено во второй вертикальной графе таблицы: «Окраска минерала».

Следующая вертикальная графа – «Внутренние рефлексы в порошке», позволяет выделить минералы с ясно выраженными внутренними рефлексами, что особено важно в группах бесцветных минералов.

Последняя графа перед определение номера диагностической группы – «Твердость». Определение твердости студентами выполняется в

кабинетных условиях быстро двумя способами. По методу царапания медной и стальной иглами определяется класс твердости: «высокая», «средняя» и «низкая». На микротвердометре МПТ-3 уточняется значение микротвердости.

Определение диагностической группы сужает поиск минерала, но еще не решает окончательно задачу определения. Некоторые группы являются весьма сложными по набору минералов, например №№ 7, 10, 15, 22 и др. Далее следует использовать все дополнительные свойства по справочникам: морфология зерен, внутреннее строение, парагенетические ассоциации, цветовые оттенки, и др. Большую помощь могут оказать микрохимические реации, при наличии набора стандартных реактивов. Определение некоторых минералов может быть уверенным только путем анализа химического состава и рентгенограммы.

Стандартные схемы исследования рудного минерала и аншлифа

Схема исследования минерала :

1. Оценивается коэффициент отражения (относительно эталонов) или измеряется на спектрофотометре.

2. Определяются: цвет, анизотропия, двуотражение, цветные эффекты, наличие внутренних рефлексов, микротвердость методом царапания.

3. Проверяется наличие магнитности.

4. Изучается форма и внутреннее строение зерен.

5. По таблице свойств определяется минерал и группа аналогов.

6. По справочникам уточняются признаки и делается выбор.

7. Если определение затруднено, то уточняется микротвердость на приборе ПМТ-3 и по таблице твердости минералов еще раз определяется минерал.

8. В случае если минерал не удалось определить по табличным данным:

– готовят образец для микрозондового анализа для уточнения химического состава;

– готовят препарат для рентгеновского изучения.

Схема описания аншлифа:

1. Определяется макроскопически текстура образца.

2. Определяется полный минеральный состав под микроскопом.

3. Количество минеральных фаз и их объем:

– главные минералы (> 1 %);

– второстепенные минералы(< 1 %);

– редкие минералы (единичные зерна).

4. Измеряются размеры зерен всех минералов.

5. Выделяются закономерные срастания парагенезисы и ассоциации.

6. Анализируются возрастные взаимоотношения между минералами и ассоциациями.

7.Определяется последовательность образования, составляется ее схема.

8.Определяется структура, тип оруденения.

9.Делается заключение о генезисе.

10. Намечаются места для иллюстрации доказательств.

Россия – земля, которую природа щедро одарила таким минеральным богатством как железная руда. Чтобы хотя бы примерно оценить это везение, достаточно представить роль металлических предметов в нашей жизни и перекинуть логический мостик к категориям производства.

Недаром времена, когда они только вошли в жизнь людей сотни веков назад, изменения в укладе и сознании человечества оказались настолько велики, что эпоха эта стала именоваться «железным веком».

Что такое железная руда и как она выглядит

Образования в земной коре, содержащие железо в более или менее чистом виде или его соединения с другими веществами: кислородом, серой, кремнием и др.

Рудой такие залежи называются тогда, когда добыча ценного вещества в промышленных масштабах является экономически выгодной.

Видов подобных минеральных образований очень много. Видовой лидер геологической породы – красный железняк или по-гречески гематит. Название в переводе с греческого означает «кроваво-красный», имеет химическую формулу – Fe 2 O 3 .

Оксид железа отличается сложным цветом от черного до вишневого и красного. Непрозрачный, может быть в пылевом состоянии и плотным (во втором случае обладает поверхностным блеском).

Разнообразен по форме – встречается в виде зерна, чешуек, кристаллов и даже розового бутона.

Образование железной руды


По происхождению в природе можно классифицировать полезные для человека железосодержащие минералы на несколько основных групп:

  1. Магматогенные образования — формируются под воздействием высоких температур.
  2. Экзогенные — зародились в речных долинах в результате осадков и выветривании горных пород.
  3. Метаморфогенные — образуются на базе старых осадочных месторождений от высокого давления и жара.

Эти группы в свою очередь делятся на многочисленные подвиды.

Виды железных руд и их характеристики

С экономической точки зрения их классифицируют прежде всего по содержанию железа:

  1. Высокое – более 55%. Это не природные образования, а уже промышленный полуфабрикат.
  2. Среднее. Пример - аглоруда. Получают из богатого железом природного сырья через механическое воздействие.
  3. Низкое – менее 20%. Это полученные в результате магнитного сепарирования.

Экономически немаловажно и место добычи руд:

  1. Линейные — залегают в местах углублений земной поверхности, самые богатые железом, с малым содержанием серы и фосфора .
  2. Плоскоподобные — в природе формируются на поверхности железосодержащих кварцитов.

По геологическим параметрам, помимо гематитов, широко распространены и активно используются:

  1. Бурый железняк (nFe 2 O 3 + nH 2 O) – окись металла с участием воды на основе, обычно, лимонитов. Характерного грязно-желтоватого цвета, рыхлый, пористый. Ценного металла содержится от четверти до полсотни процентов. Немного — но вещество хорошо восстанавливается. Обогащается для дальнейшего изготовления хорошего чугуна.
  2. Магнитный железняк, магнетит - природный оксид железа (Fe 3 O 4). Распространены меньше гематитовых, но зато железа в них бывает более 70%. Бывают плотными и зернистыми, в виде вкрапленных в породу кристаллов, черно-синего цвета. Изначально соединение обладает магнитными свойствами, воздействие высоких температур их нивелирует.
  3. Шпатовый железняк, содержащий сидерит FeCO 3.
  4. В руде бывает большая доля глины, тогда это глинистый железняк. Редкий вид с относительно низким железо-содержанием и пустотами.

Месторождения железной руды в России

Самое крупное месторождение в мире – Курская магнитная аномалия. Природное творение настолько грандиозное, что к его осознанию шли с конца 16 века. Навигационные приборы сходили с ума от мощи электрического поля, воздействующего из-под земли на протяжении более 150 квадратных километров. Рудные запасы исчисляются миллиардным тоннажем.

В Оленегорском месторождении под Муромском разрабатываются залежи магнетитовых кварцитов.

На Кольском полуострове добывают магнетит, оливин, апатит и магнезиоферрит из Еиско-Ковдорского скопления, много рудников в Карелии на территории Костомукшского месторождения.

Одно из старейших мест добычи руды, которое можно обнаружить на карте России, расположено в Свердловской области. Оно поставляет материал с конца 18 столетия и называется Качканарская группа месторождений.

Наследие семьи предпринимателей петровской эпохи Демидовых активно преобразуется. В конце 20 века здесь стали разрабатывать Гусевогорское рудное скопление.

Запасы железной руды в мире

После грандиозного скопления под Курском самое масштабное явление среди подобных на мировой географической карте – полоса железных залежей Криворожского месторождения в Украине.

Карта месторождений железной руды в мире (для увеличения нажмите)

Богатства Лотарингского железорудного бассейна делят между собой три европейские страны – Франция, Люксембург и Бельгия.

В Северной Америке крупные рудники работают в Ньюфаундленде, Бель-Айленде и под Лабрадор-Сити. В Южной — места, богатые рудой, назвали Итабира и Каражас.

На северо-востоке Индии также имеются внушительные запасы руды, а на африканском континенте ее добывают в гвинейском городе Конакри.

Список распределения по странам выглядит так:

Добыча железной руды

Первый критерий способов добычи – где ведутся работы:

  1. На земле: когда ископаемые залегают не более, чем в полукилометре от поверхности. В этом случае экономически выгоднее (и дороже для экологии) разрыть гигантские карьеры посредством взрывных работ и специальной техники. Это открытый способ добычи.
  2. Под землей: большая погруженность руды в земные недра требует создания шахты. Закрытый способ добычи не так травматичен для экологической системы, но более трудоемкий и опасный для человека.

Извлеченную руду транспортируют на комбинат, где сырье измельчают для последующего обогащения. Происходит оттягивание железа из химических соединений с другими элементами.

Иногда для этого приходится пройти не один, а несколько процессов:

  1. Гравитационная сепарация (частицы руды из-за разной физической плотности распадаются за счет механического воздействия на материал – дробления, вибрации, вращения и отсеивания).
  2. Флотация (окисление равномерно измельченного сырья воздухом, присоединяющим к себе металл).
  3. Магнитная сепарация:
    • примесь смывают потоком воды, а металл оттягивают магнитом – получается рудный концентрат;
    • продукт магнитной сепарации проходит флотацию – сырье выявляет еще половину железа в чистом виде.
  4. Комплексный метод: использование всех указанных выше процессов, иногда и несколько раз.

Полученное в итоге горячебрикетированное железо отбывает на электрометаллургический комбинат, где принимает вид металлической заготовки стандартных форм или по индивидуальному заказу до 12 метров. А чугун отправляется в доменное производство.

Применение железной руды

Использование по прямому назначению – изготовление чугуна и стали.

А уж делают из них великое разнообразие самых разных вещей, окружающих нас: автомобили, офисная техника, трубопроводы, посуда и станки, художественная ковка и различные инструменты.

Заключение

Запасы железной руды обозначается на картах в виде равнобедренного треугольника с широким основанием черного цвета. Знак передает всю суть черной металлургии: это устойчивая основа современной производственной экономики, которую по-прежнему большинство финансистов считают истинной – в противоположность различным криптовалютным рынкам.

Вверх