Кора головного мозга, зоны коры головного мозга. Строение и функции коры головного мозга

1. Кора больших полушарии выполняет функцию высшего анализа сигналов поступающих от всех рецепторов тела и орган высшего синтеза ответных реакций в биологически целесообразный акт.

2. Кора больших полушарий является высшим органом координации рефлекторной деятельности. Она способна пускать в ход, затормаживать. согласовывать работу нижележащих отделов, этажей ЦНС.

3. Кора больших полушарий, как высший орган координации рефлекторной деятельности, формирует биологически целесообразные реакции, которые обеспечивают приспособление организма к внешней среде, реакции, уравновешивающие организм с внешней средой.

4. На высшем этапе своего развития ЦНС, кора больших полущарий приобретает еще одну функцию, она становится органом психической деятельности. На основе физиологических процессов в ней возникают ощущения и восприятия, появляется мышление. Кора головного мозга -это орган мышления. Мозг человека, его высший отдел кора больших полушарий, обеспечивает возможность социальной жизни, обеспечивает возможность общения, познания окружающего мира, познания природы.

Анатомия и гистология коры

Кора больших полушарий - самый совершенный аппарат ЦНС. Свое название она подточила потому, что покрывает мозг со всех сторон, как кора дерева окружает его ствол. Она изрезана множеством борозд и извилин. Сверху она покрыта слоем нейронов, толщина которых варьирует в пределах 2-4 мм, составляя в среднем 2,5 мм. В коре находится около 49 млрд клеток, т.е. 14/15 всех нейронов.(Начиная с 20 лет, каждый день гибнет около 100 тыс. нейронов коры). Основная часть коры состоит из белого вещества. Белое вещество переднего мозга образовано аксонами этих клеток, а также аксонами различных восходящих путей. Как и во всяком нервном центре, в коре имеются сенсорные нейроны, воспринимающие информацию с приносящих путей, эфферентные нейроны, отправляющие приказы по нисходящим путям, и вставочные или ассоциативные нейроны, которые составляют основную массу. За счет отростков ассоциативных нейронов кора объединяется в единое целое: возбуждение возникшее в одном участке, может охватить всю кору.

В зависимости от филогенеза, в соответствии с историей развития коры больших полушарий выделяют 3 части.

1. Древняя кора - архикортикс. Древняя кора включает обонятельные луковицы (сюда приходят афферентные волокна от обонятельного эпителия слизистой полости носа), обонятельные тракты (расположены на нижней поверхности лобной доли) и обонятельные бугорки (здесь расположены вторичные обонятельные центры).

2. Старая кора - палеокортекс. Старая кора включает поясну извилину, гиппокамп и миндалину. Все эти образования входят в состав лимбической системы, которая является высшим отделом вегетативной нервной системы.

3. Новая кора - неокортекс. В состав новой коры входят все остальные области коры больших полушарий: лобная, височная, затылочная, теменная доли.

В процессе филогенеза новая кора впервые появляется у млекопитающих и достигает высшего развития у человека, т. е. является наиболее молодой нервной структурой, и у человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

Цитоархитектоника коры (расположение и взаимосвязь нейронов в коре). Если древняя кора имеет 3 слоя, то новая кора имеет 6-ти слойное сроение.

1.Самый поверхностный слой – молекулярный. В этом слое очень мало нервных клеток, но много ветвящихся волокон нижележащих клеток, которые образуют густую сеть сплетений.

2.Второй слой - наружный зернистый, представлен в основном звездчатыми клетками и частично малыми пирамидными клетками. Волокна клеток второго слоя расположены преимущественно вдоль поверхности коры, образуя кортико-кортикальные связи.

3.Третий слой - наружный пирамидный слой, состоит в основном из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортико-кортикальные ассоциативные связи.

4 Внутренний зернистый слой по характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое имеют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса; здесь отмечена наибольшая плотность капилляризации.

5. Внутренний пирамидный слой или слой клеток Беца. Этот слой состоит в основном из средних и больших пирамидных клеток. Но в этом слое в прецентральной извилине находятся крупные, гигантские пирамидные клетки, клетки Беца. Длинные дендриты этих клеток идут ввер и достигают поверхностный слой - это так называемые апикальные дендриты. Аксоны клеток Беца идут к различным ядрам головного и спинного мозгаобразуя эфферентные кортико-спинальный и кортико-бульбарный двигательные тракты. Самые длинные аксоны входят в состав пирамидного тракта и доходят до нижних сегментов спинного мозга, оканчиваясь на вставочных клетках и на a-мотонейронах спинного мозга.

6. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортико-таламические пути.

Входные афферентными импульсы поступают в кору снизу, поднимаются к клеткам Ⅲ - Ⅴ слоев коры, здесь происходит восприятие и обработка поступающих в кору сигналов.

Главными эфферентными связями коры больших полушарий являются, покидающие кору эфферентные пути, формирующиеся преимущественно в V-VI слоях.

Более детально деление коры на различные поля проведено на основе цитоархитектонических признаков К. Бродманом (1909), который выделил 52 поля; многие из них характеризуются функциональными и нейрохимическими особенностями.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. В коре мозга имеются функциональные объединения нейронов, расположенные в цилиндрике диаметром 0,5-1,0 мм. Эти объединения были названы нейронными колонками . Они обнаружены в моторной коре, в различных зонах сенсорной коры. Соседние нейронные колонки могут взаимодействовать друг с другом.

Таким образом, различные области новой коры имеют четкое, стереотипное строение.

Но несмотря на общностъ нейронной организации всей коры, разные отделы коры отличаются друг от друга. Различая заключает в количестве и размерах нейронов, в ходе волокон, ветвлении аксонов и дендритов. Эти различия обусловлены неодинаковой функцией разных областей коры. Каждый участок, область коры выполняет какую-то определенною функцию, имеется функциональная специализация разных областей коры.

ФУНКЦИИ КОРЫ БОЛЬШИХ ПОЛУШАРИЙ

В функциональном отношении кора больших полушарий делиться на три области: сенсорную, двигательную (моторную) и ассоциативную кору. Сенсорная область включает те области коры больших полушарий, в которых проецируются сенсорные раздражители. Сенсорная кора располагается преимущественно в теменной, височной и затылочной долях большого мозга. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Зоны сенсорной коры включают первичные и вторичные области коры. В первичных областяхкорыформируются ощущения одного качества. Во вторичных областях коры формируются ощущения, возникающее в ответ на действие нескольких раздражителей.

Основные сенсорная области коры находиться в:

Постцентральной извилине: кожной чувствительности от тактильных, болевых температурных рецепторов; чувствительность опорно-двигательного аппарата – мышц, суставов, сухожилий; тактильная и вкусовая чувствительность языка.

- средняя височная извилина (и. Гешля), здесь формируются звуковые ощущения,–

Верхняя и средняя височная извилина, здесь локализуется центр вестибулярного анализатора, формируются ощущения «схемы тела»

- областьклиновидной извилины – первичная зрительная область, расположенная в затылочной коре.

Ассоциативная область коры включает участки, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко. В ассоциативной коре можно выделить зоны:

Таламолобная система;

Таламотеменная система;

Таламовисочная система.

Таламолобная система участвует в формировании доминирующей мотивации:эта функция обусловлена двусторонней связью между лобной корой и лимбической системой, обеспечивает вероятности прогнозирования и самоконтроля действий путем постоянного сравнения результат действия с исходными намерениями.

Таламотеменная система выполняет функции гнозиса, формирование «схемы тела» - стереогнизис, и праксиса. Гнозис – это функция различных видов узнавания: формы, величины, значения предметов, понимания речи, познание процессов и закономерностей. Стереогнизис функция обеспечивающая способность узнавания предметов на ощупь. В центре стереогнизиса формируются ощущения, отвечающие за создание трехмерной модели тела – «схема тела». Праксис – это функция, направленная на выполнение какой-либо деятельности, ее центр располагается в надкраевой извилине, обеспечивает хранение и реализацию программы двигательных актов (рукопожатие, причесывание и т.д.).

Таламовисочная системанаходится в верхней извилине височной коры, здесь расположен слуховой центр речи Вернике. Он обеспечивает речевой гнозис – распознавание и хранение устной речи. В средней части верхней височной извилины находится центр распознания музыкальных звуков. В границах височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Двигательная кора занимает области лобной доли коры больших полушарий. В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентарльной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Эта кора получает основную часть эфферентной импульсации от базальных ядер и мозжечка и участвует в перекодировке информации программ сложных движений. В премоторной коре расположены центры, связанные с социальными функциями человека:

В заднем отделе средней лобной извилины - центр письменной речи,

В заднем отделе нижней лобной извилины центр моторной речи Брока, обеспечивающие речевой праксис, а также музыкальный моторный центр, определяющий тональность речи.

Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основные эфферентные выходы двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки коры. Пирамидные нейроны двигательной коры возбуждают или тормозят мотонейроны стволовых и спинальных центров.

Одним из основных принципов функционирования коры больших полушарий головного мозга является принцип межполушарной асимметрии. Межполушарная асимметрия обусловлена асимметричной локализацией нервного аппарата второй сигнальной системы и доминированием правой руки, как средства адаптивного поведения. По данным современной нейрофизиологии (В.Л. Бианки), левое полушарие большого мозга у человека специализируется на выполнение вербальных символических функций, а правое полушарие на реализации пространственных образных функций. Результатом такого функционального разделения является асимметрия психической деятельности, которая проявляется различиями типах мыслительных операций. Доминирование левого полушария обусловливает мыслительный тип, а правого полушария художественный тип мышления.

ПРАКТИЧЕСКАЯ РАБОТА

Для определения коэффициента функциональной асимметрии используются бланки, представляющие собой листы бумаги (А4), на которых расположены 8 равных прямоугольников по 4 в ряд. Каждый прямоугольник заполняется последовательно слева направо с №1 по №4 и в обратном направлении с №5 по №8. Форма бланка представлена на рисунке 1.

Рисунок 1 – Бланк задания

Инструкция: «По моему сигналу вы должны начать проставлять точки в каждом прямоугольнике бланка. За отведенное для каждого прямоугольника время (5 с) вы должны поставить в нем как можно больше точек. Переходить из одного прямоугольника в другой нужно по команде, не прерывая работы. Все время работаете в максимальном для себя темпе. Теперь возьмите в правую (или левую руку) карандаш и поставьте его перед первым прямоугольником бланка».

По секундомеру экспериментатор подает сигнал: «Начали!», затем через каждые 5 секунд дает команду: «Следующий!». По истечении 5 секунды работы в прямоугольнике №8 экспериментатор подает команду: «Стоп». Подсчитайте количество точек в каждом квадрате и заполните таблицу 1 в рабочей тетради.

Таблица 1 – Протокол исследования



Используя результаты таблицы 1, составьте график зависимости между временем выполнения этапа задания (ось Х) и количеством точек для каждой руки (ось Y). Сделайте вывод, руководствуясь следующей закономерностью: у правшей – работоспособность правой руки выше работоспособности левшей, а у левшей – наоборот.

Рассчитайте коэффициент функциональной асимметрии по работоспособности левой и правой руки, получив суммарные значения работоспособности рук путем сложения всех данных по каждому из восьми прямоугольников. Для расчета используйте формулу для оценки коэффициента функциональной асимметрии (1):

KF A = [(SR - SL) / (SR + SL)] (1)

где KF A – коэффициент функциональной асимметрии, д.е.;

SR – общая сумма точек, поставленных правой рукой, шт;

SL – общая сумма точек, поставленных правой левой, шт.

Знак коэффициента функциональной асимметрии интерпретируется следующим образом: если величина коэффициент принимает положительное значение «+», это свидетельствует о смещении баланса в сторону активности левого полушария; если полученный коэффициент принимает отрицательное значение, знак «–», это указывает на активность правого полушария.

Проанализируйте получившийся результат и сделайте вывод.


Синонимы: проекционная кора или корковый отдел анализаторов

Третичная кора

На одном графике две кривые – для правой (синий) и левой руки (красный);

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 квадратных сантиметров, покрывающий большие полушария. Новая кора составляет около 72% всей площади коры и около 40% массы головного мозга. В новой коре имеется 14 млр. Нейронов, а количество глиальных клеток приблизительно в 10 раз больше.

Кора головного мозга в филогенетическом плане является наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

В направлении с поверхности новой коры вглубь различают шесть горизонтальных слоев.

    Молекулярный слой. Имеет очень мало клеток, но большое количество ветвящихся дендриов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

    Наружный зернистый слой. Составлен в основном звездчатыми и частично пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

    Наружный пирамидный слой. Состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток как и зернистые клетки 2-го слоя, образуют кортикокортикальные ассоциативные связи.

    Вгутренний зернистый слой. По характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое афферентные волокна имеют синаптические окончания, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

    Внутренний пирамидный слой. Образован средними и крупными пирамидными клетками. Причем, гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют афферентные кортикоспинальные и кортикобульбарный двигательные пути.

    Слой полиморфных клеток. Образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Оценивая в целом афферентные и эфферентные связи новой коры, необходимо отметить, что в слоях 1 и 4 происходят восприятие и обработка поступающих в кору сигналов. Нейроны 2 и 3 слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в 5 и 6 слоях.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. При этом они расположены таким образом, что захватывают все слои коры. Такие объединения нейронов были названы учеными нейронными колонками . Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом.

Возрастание в филогенезе роли коры большого мозга, анализ и регуляция функций организма и подчинение себе нижележащих отделов центральной нервной системы учеными определено как кортикализация функций (объединение).

Наряду с кортикализацией функций новой коры, принято выделять и локализацию ее функций. Наиболее часто используемым подходом к функциональному разделению коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры – зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (центральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные 2 и 4 слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями (ядерными частями анализаторов, как полагал И.П.Павлов). Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть постцентральной дольки на медиальной поверхности полушарий (поля 1 – 3), которую обозначают как соматосенсорную область . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-мышечного аппарата от мышечных, суставных, сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, а проекция нижней части голени и стоп – в коре постцентральной дольки на медиальной поверхности полушарий (Рис. 12).

При этом проекция наиболее чувствительных участков (язык, гортань, пальцы рук и т.д.) имеет относительно большие зоны по сравнению с другими частями тела.

Рис. 12. Проекция частей тела человека на область коркового конца анализатора общей чувствительности

(разрез мозга во фронтальной плоскости)

В глубине латеральной борозды располагается слуховая кора (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеется четкая топическая проекция: в разный участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также, как предполагают ученые, центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мосто-мозжечковый путь).

Еще одна область новой коры расположена в затылочной коре. Это первичная зрительная область . Здесь имеется топическое представительство рецепторов сетчатки. При этом каждой точке сетчатки соответствует свой участок зрительной коры. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры мозга в этой области приводит к возникновению световых ощущений. Около первичной зрительной области располагается вторичная зрительная область . Нейроны этой области полимодальны и отвечают не только на световые, но и на тактильные, а также на слуховые раздражители. Не случайно именно в этой зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознание. Раздражение этой области коры вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающем мире и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей обработки в ассоциативную кору.

Ассоциативные области коры (межсенсорная, межанализаторная), включает участки новой коры большого мозга, которые расположены рядом с сенсорными и двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко, что связано со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. Ассоциативная коры является филогенетически наиболее молодой областью новой коры, получившей наибольшее развитие у приматов и человека. У человека она составляет около 50% всей коры или 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры, отличающей их от нейронов первичных зон, является полисенсорность (полимодальность). Они отвечают с практически одинаковым порогом не на один, а на несколько раздражителей – зрительные, слуховые, кожные и пр. Полисенсорность нейронов ассоциативной коры создается как ее кортикокортикальными связями с разными проекционными зонами, так и главным ее афферентным входом от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющий произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психических функций.

По таламокортикальным проекциям выделяют две ассоциативные системы мозга:

    таламотеменную;

    таломовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет афферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Гнозис – это различные виды узнавания: формы, величины, значения предметов, понимание речи и пр. К гностическим функциям относится оценка пространственных отношений, например взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса (расположен сзади от средних отделов постцентральной извилины). Он обеспечивает способность узнавания предметов на ощупь. Вариантом гностической функции является также и формирование в сознании трехмерной модели тела («схемы тела»).

Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкраевой извилине и обеспечивает хранение и реализацию программы двигательных автоматизированных актов (например, причесывание, рукопожатие и пр.).

Таламолобная система . Представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация данной функции основывается на других функциях таломолобной системы, таких как:

    формирование доминирующей мотивации, обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лобной коры и лимбической системы и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством;

    обеспечение вероятностного прогнозирования, что выражается в изменении поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации;

    самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (согласно теории функциональной системы П.К.Анохина, акцептор результата действия).

В результате проведения по медицинским показаниям префронтальной лоботомии, при которой пересекаются связи между лобной долей и таламусам, наблюдается развитие «эмоциональной тупости», отсутствие мотивации, твердых намерений и планов, основанных на прогнозировании. Такие люди становятся грубыми, нетактичными, у них появляется тенденция к повторению каких-либо двигательных актов, хотя изменившаяся обстановка требует выполнения совсем других действий.

Наряду с таламотеменной и таламолобной системами, некоторые ученые предлагают выделять и таламовисочную систему. Однако концепция таламовисочной системы до настоящего времени не получает подтверждения и достаточной научной проработки. Ученые отмечают определенную роль височной коры. Так, некоторые ассоциативные центры (например, стереогнозиса и праксиса) включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины. Именно данный центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Также необходимо отметить, что психофизиологические функции, осуществляемые ассоциативной корой, инициируют поведение, обязательным компонентом которого являются произвольные и целенаправленные движения, осуществляемые при обязательном участии двигательной коры.

Двигательные области коры . Понятие о двигательной коре больших полушарий начало формироваться с 80-х годов Х1Х в., когда было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны. На основании современных исследований в двигательной коре принято выделять две моторные области: первичную и вторичную.

В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топография проекций мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляется с минимальным порогом, что говорит о ее высокой возбудимости. Они (эти двигательные реакции) представлены элементарными сокращениями противоположной стороны тела. При поражении этой корковой области утрачивается способность к тонким координированным движениям конечностей, особенно пальцев рук.

Вторичная двигательная кора . Расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Премоторная кора получает основную часть эфферентной импульсации базальных ганглиев и мозжечка и участвует в перекодировании информации о плане сложных движений. Раздражение данной области коры вызывает сложные координированные движения (например, поворот головы, глаз и туловища в противоположные стороны). В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: в заднем отделе средней лобной извилины располагается центр письменной речи, в заднем отделе нижней лобной извилины располагается центр моторной речи (центр Брока), а также музыкальный моторный центр, определяющий тональность речи и способность петь.

Моторную кору часто называют агранулярной корой, поскольку в ней плохо выражены зернистые слои, но более ярко выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры. Такие рядом лежащие нейронные комплексы, выполняющие сходные функции, называют функциональными двигательными колонками . Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены, как правило, в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, начинающиеся от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток коры прецентральной извилины, премоторной коры и постцентральной извилины.

Пирамидный путь состоит из 1 млн волокон кортикоспинальньного пути, начинающихся от коры верхней и средней трети перцентральной извилины, и 20 млн волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины. Через двигательную кору и пирамидные пути осуществляются произвольные простые и сложные целенаправленные двигательные программы (например, профессиональные навыки, формирование которых начинается в базальных ганглиях и заканчивается во вторичной моторной коре). Большинство волокон пирамидных путей осуществляет перекрест. Но небольшая их часть остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора (двигательные навыки письма, поворот головы и глаз в противоположную сторону и пр.).

К корковым экстрапирамидным путям относятся кортикобульбарные и кортикоретикулярные пути, начинающиеся приблизительно в той же области, что и пирамидные пути. Волокна кортикобульбарного пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающих точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Данная система осуществляет регуляцию тонуса, позы, координацию и коррекцию движений.

Оценивая в общем роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лобной системе, замысел движения – в ассоциативной коре больших полушарий, программа движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения Межполушарные взаимоотношения проявляются у человека в двух главных формах:

    функциональной асимметрии больших полушарий:

    совместной деятельности больших полушарий.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Исследование функциональной асиммертии полушарий началось в середине Х1Х в., когда французские медики М.Дакс и П.Брока показали, что нарушение речи человека возникает при поражении коры нижней лобной извилины, как правило левого полушария. Некоторое время спустя немецкий психиатр К.Вернике обнаружил в коре заднего отдела верхней височной извилины левого полушария слуховой центр речи, поражение которого приводит к нарушению понимания устной речи. Эти данные и наличие моторной асимметрии (праворукости) способствовало формированию концепции, согласно которой для человека характерно левополушарное доминирование, образовавшееся эволюционно в результате трудовой деятельности и являющееся специфическим свойством его мозга. В ХХ столетии в результате применения различных клинических методик (особенно при исследовании больных с расщепленным мозгом – осуществлялась перерезка мозолистого тела), было показано, что по ряду психофизиологических функций у человека доминирует не левое, а правое полушарие. Таким образом возникла концепция частичного доминирования полушарий (ее автором является Р.Сперри).

Принято выделять психическую , сенсорную и моторную межполушарную асимметрии мозга. Опять же, при исследовании речи было показано, что словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны преимущественно с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упражнений, то есть упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно статически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предметов. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предметов и временные отношения. В эмоциональной сфере правое полушарие обусловливает преимущественно более древние, отрицательные эмоции, контролирует проявление сильных эмоций. В целом правое полушарие «эмоционально». Левое полушарие обусловливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которые трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции, создаются предпосылки логического мышления.

Моторная асимметрия связана с тем, что мышцы полушарий, обеспечивая новый, более высокий уровень регуляции сложных функций мозга, одновременно повышает требования к совмещению деятельности двух полушарий.

Совместная деятельность больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга.

Клинические исследования показали, что помимо поперечных комиссуральных волокон, обеспечивающих взаимосвязь полушарий мозга, также и продольных, а также вертикальных комиссуральных волокон.пе

Вопросы для самоконтроля:

    Общая характеристика новой коры.

    Функции новой коры.

    Строение новой коры.

    Что такое нейронные колонки?

    Какие области коры выделяются учеными?

    Характеристика сенсорной коры.

    Что такое первичные сенсорные области? Их характеристика.

    Что такое вторичные сенсорные зоны? Их функциональное назначение.

    Что такое соматосенсорная область коры и где она располагается?

    Характеристика слуховой области коры.

    Первичная и вторичные зрительные области. Их общая характеристика.

    Характеристика ассоциативной области коры.

    Характеристика ассоциативных систем мозга.

    Что собой представляет таламотеменная система. Ее функции.

    Что собой представляет таламолобная система. Ее функции.

    Общая характеристика двигательной коры.

    Первичная моторная кора; ее характеристика.

    Вторичная моторная кора; ее характеристика.

    Что такое функциональные двигательные колонки.

    Характеристика корковых пирамидных и экстрапирамидных путей.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

1. Какое строение имеет кора больших полушарий?

Кора больших полушарий представляет собой слой се-рого вещества толщиной в 2-4 мм. Она образована нерв-ными клетками (около 14 млрд), расположенными на поверхности переднего мозга. Борозды (углубления), изви-лины (складки) увеличивают площадь поверхности коры (до 2000—2500 см 2).

2. Какие доли выделяют в коре больших полушарий?

Кора больших полушарий разделена на доли глубокими (бороздами. В каждом полушарии выделяют лобную долю, теменную, височную и затылочную. Лобная доля от темен-ной отделена центральной бороздой. Височную долю от лобной и теменной отделяет боковая борозда. Затылочная доля отделена от теменной менее глубокой теменно-затылочной бороздой.

3. Какие функции выполняет кора больших полушарий?

Кора больших полушарий отвечает за восприятие всей поступающей в мозг информации (зрительной, слуховой, осязательной, вкусовой и т.д.), за управление всеми слож-ными мышечными движениями. С работой больших по-лушарий связаны психические функции (память, речь, мышление и др.).

4. Каково расположение областей, ответственных за осу-ществление функций коры?

В коре больших полушарий различают сенсорные, мо-торные и ассоциативные зоны.

В сенсорных зонах находятся центральные отделы ана-лизаторов, т.е. происходит обработка информации, посту-пающей от органов чувств. Соматосенсорная зона (кожной чувствительности) располагается в заднецентральной изви-лине, сзади от центральной борозды. К этой зоне приходят импульсы от скелетных мышц, сухожилий и суставов, а так-же импульсы от тактильных, температурных и других рецеп-торов кожи. В правое полушарие поступают импульсы от левой половины тела, а в левое — от правой. Зрительная зо-на располагается в затылочной области коры. В эту зону приходят импульсы от сетчатки. Слуховая зона располагает-ся в височной области. Раздражение этой области вызывает ощущение низких или высоких, громких или тихих звуков. Зона вкусовых ощущений располагается в теменной области, в нижней части заднецентральной извилины. При ее раздражении возникают различные вкусовые ощущения. Материал с сайта

Моторными зонами называют отделы коры больших полушарий, при раздражении которых возникает движение. Двигательная зона расположена в передней центральной из вилине (спереди от центральной борозды). С верхней ча-стью полушарий связана регуляция движений нижних ко-нечностей, затем туловища, еще ниже руки, а затем мышц лица и головы. Наибольшее пространство занимает двига-тельная зона кисти и пальцев руки и мышц лица, наимень-шее — мышц туловища. Пути, по которым импульсы идут от больших полушарий к мышцам, образуют перекрест, поэто-му при раздражении моторной зоны правой стороны коры возникает сокращение мышц левой стороны тела.

Ассоциативные зоны (в частности, теменная доля) свя-зывают различные области коры. Деятельность этих зон лежит в основе высших психических функций человека. При этом правое полушарие отвечает за образное (узнава-ние людей, восприятие музыки, художественное творчест-во) мышление, левое за абстрактное (письменная и устная речь, математические операции) мышление.

Деятельность каждого органа человека находится под контролем коры больших полушарий.

Не нашли то, что искали? Воспользуйтесь поиском

На этой странице материал по темам:

  • строение коры больших полушарий кратко
  • кора мозга сообщение
  • зоны коры больших полушарий мозга сенсорные ощущений
  • мышечная зона копы больших полушарий находится в
  • строение и функции коры больших полушарий у школьников
Вверх