Все про многогранники. Основные виды многогранников и их свойства

Хотя стереометрию изучают только в старших классах школы, но с кубом, правильными пирамидами и другими простыми многогранниками знаком каждый школьник. Тема «Многогранники» имеет яркие приложения, в том числе в живописи и архитектуре. Кроме этого, в ней, по образному выражению академика Александрова, сочетаются «лёд и пламень», то есть живое воображение и строгая логика. Но в школьном курсе стереометрии мало времени уделяется правильным многогранникам. А ведь у многих правильные многогранники вызывают большой интерес, но нет возможности узнать о них больше на уроке. Именно поэтому я решила рассказать обо всех правильных многогранниках, имеющих разнообразные формы, и об их интересных свойствах.

Структура правильных многогранников очень удобна для изучения множества преобразований многогранника в себя (повороты, симметрии и т. д.). Получающиеся при этом группы преобразований (их называют группами симметрии) оказались весьма интересными с точки зрения теории конечных групп. Эта же симметричность позволила создать серию головоломок в виде правильных многогранника, начавшуюся «кубиком Рубиком» и «молдавской пирамидкой».

Для составления реферата использовался Научно-популярный физико-математический журнал «Квант», из которого взята информация о том, что такое правильный многогранник, об их количестве, о построении всех правильных многогранников и описании всех поворотов, при которых многогранник совмещается со своим первоначальным положением. Из газеты «Математика» я получила интересные сведения о звёздчатых правильных многогранниках, их свойствах, открытии и их применении.

Теперь у вас есть возможность окунуться в мир правильного и великолепного, в мир прекрасного и необычайного, который привораживает наш взор.

1. Правильные многогранники

1. 1 Определение правильных многогранников.

Выпуклый многогранник называется правильным, если его гранями являются равные правильные многогранники и все многогранные углы равны.

Рассмотрим возможные правильные многогранники и, прежде всего те из них, гранями которых являются правильные треугольники. Наиболее простым таким правильным многогранником является треугольная пирамида, гранями которой являются правильные треугольники. В каждой её вершине сходится по три грани. Имея всего четыре грани, этот многогранник называется также правильным тетраэдром, или просто тетраэдром, что в переводе с греческого языка означает четырёхгранник.

Многогранник, гранями которого являются правильные треугольники и в каждой вершине сходится четыре грани, его поверхность состоит из восьми правильных треугольников, поэтому он называется октаэдром.

Многогранник, в каждой вершине которого сходиться пять правильных треугольников. Его поверхность состоит из двадцати правильных треугольников, поэтому он называется икосаэдром.

Заметим, что поскольку в вершинах выпуклого многогранника не может сходиться более пяти правильных треугольников, то других правильных многоугольников, гранями которых являются правильные треугольники, не существует.

Аналогично, поскольку в вершинах выпуклого многогранника может сходиться только три квадрата, то, кроме куба, других правильных многогранников, у которых гранями являются квадраты, не существует. Куб имеет шесть граней и поэтому также называется гексаэдром.

Многогранник, гранями которого являются правильные пятиугольники и в каждой вершине сходятся три грани. Его поверхность состоит из двенадцати правильных пятиугольников, поэтому он называется додекаэдром.

Из определения правильного многогранника следует, что правильный многогранник «совершенно симметричный»: если отметить какую-то грань Г и одну из её вершин А, то для любой другой грани Г1 и её вершины А1 можно совместить многогранник с самим собой движением в пространстве так, что грань Г совместится с Г1 и при этом вершина А попадает в точку А1.

1. 2. Историческая справка.

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало.

Первые четыре многогранника были известны задолго до Платона. Археологи нашли додекаэдр, изготовленный во времена этрусской цивилизации по крайней мере за 500 лет до н. э. Но, видимо, в школе Платона додекаэдр был открыт самостоятельно. Существует легенда об ученике Платона Гиппазе, погибшем в море потому, что он разгласил тайну о «шаре с двенадцатью пятиугольниками».

Со времен Платона и Евклида хорошо известно, что существует ровно пять типов правильных многогранников.

Докажем этот факт. Пусть все грани некоторого многогранника -правильные п-угольники и k - число граней, примыкающих к вершине (оно одинаково для всех вершин). Рассмотрим вершину А нашего многогранника. Пусть M1, М2,. , Mk - концы k выходящих из неё рёбер; поскольку двугранные углы при этих рёбрах равны, AM1M2Mk - правильная пирамида: при повороте на угол 360º/k вокруг высоты АН вершина М переходит в М, вершина M1 - в М2. Mk в M1 .

Сравним равнобедренные треугольники AM1M2 и HM1M2 У них основание общее, а боковая сторона AM1 больше HM1, поэтому M1AM2

Тетраэдр 3 3 4 4 6

Куб 4 3 8 6 12

Октаэдр 3 4 6 8 12

Додекаэдр 5 3 20 12 30

Икосаэдр 3 5 12 20 30

1. 3. Построение правильных многогранников.

Все соответствующие многогранники можно построить, взяв за основу куб.

Чтобы получить правильный тетраэдр, достаточно взять четыре несмежные вершины куба и отрезать от него пирамидки четырьмя плоскостями, каждая из которых проходит через три из взятых вершин

Такой тетраэдр можно вписать в куб двумя способами.

Пересечение двух таких правильных тетраэдров - это как раз правильный октаэдр: многогранник из восьми треугольников с вершинами, расположенными в центрах граней куба.

2. Свойства правильных многогранников.

2. 1. Сфера и правильные многогранники.

Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой «описанной сферой», имеются еще две важные сферы. Одна из них, «срединная сфера», проходит через середины всех ребер, а другая, «вписанная сфера», касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Радиус описанной сферы Название многогранника Радиус вписанной сферы

Тетраэдр

Додекаэдр

Икосаэдр

2. 1. Самосовмещения многогранников.

Какие самосовмещения (вращения, переводящие в себя) есть у куба, тетраэдра и октаэдра? Заметим, что некоторая точка-центр многогранника - при любом самосовмещении переходит в себя, так что все самосовмещения имеют общую неподвижную точку.

Посмотрим, какие вообще в пространстве бывают вращения с неподвижной точкой А. Покажем, что такое вращение обязательно является поворотом на некоторый угол вокруг некоторой прямой проходящей через точку А. Достаточно у нашего движения F(c F(A) = A) указать неподвижную прямую. Найти её можно так: рассмотрим три точки M1, M2 = F(M1) и M3 = F(M2), отличные от неподвижной точки А, проведём через них плоскость и опустим на неё перпендикуляр АН - это и будет искомая прямая. (Если М3 = М1, то наша прямая проходит через середину отрезка M1M2, a F - осевая симметрия: поворот на угол 180°).

Итак, самосовмещение многогранника обязательно является поворотом вокруг оси, проходящей через центр многогранника. Эта ось пересекает наш многогранник в вершине или во внутренней точке ребра или грани. Следовательно, наше самосовмещение переводит в себя вершину, ребро или грань, значит, оно переводит в себя вершину, середину ребра или центр грани. Вывод: движение куба, тетраэдра или октаэдра, совмещающее его с собой, есть вращение вокруг оси одного из трёх типов: центр многогранника - вершина, центр многогранника - середина ребра, центр многогранника - центр грани.

Вообще, если многогранник совмещается с самим собой при повороте вокруг прямой на угол 360°/m, то эту прямую называют осью симметрии m-го порядка.

2. 2. Движение и симметрии.

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают.

Рассматривая самосовмещения многогранников, можно включить в их число не только вращения, но и любые движения, переводящие многогранник в себя. Здесь движение - это любое преобразование пространства, сохраняющее попарные расстояния между точками.

В число движений, кроме вращений, нужно включить и зеркальные движения. Среди них - симметрия относительно плоскости (отражение), а также композиция отражения относительно плоскости и поворота вокруг перпендикулярной ей прямой (это - общий вид зеркального движения, имеющего неподвижную точку). Конечно, такие движения нельзя реализовать непрерывным перемещением многогранника в пространстве.

Рассмотрим подробнее симметрии тетраэдра. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии.

Прямые симметрии остальных правильных многогранников можно вычислить по формуле [(q - 1)N0 + N1 + (p - 1)N2]/2 + 1, где р-число сторон правильных многоугольников, являющихся гранями многогранника, q – число граней, примыкающих к каждой вершине, N0 – число вершин, N1 – число ребер и N2 – число граней каждого многогранника.

Гексаэдр и октаэдр имеют по 24 симметрии, а икосаэдр и додекаэдр– по 60 симметрий.

Все правильные многогранники имеют плоскости симметрии (у тетраэдра их - 6, у куба и октаэдра - по 9, у икосаэдра и додекаэдра - по 15).

2. 3. Звёздчатые многогранники.

Кроме правильных многогранников красивые формы имеют звёздчатые многогранники. Их всего четыре. Первые два были открыты И. Кеплером (1571 - 1630), а два других почти 200 лет спустя построил Л. Пуансо (1777 - 1859). Именно поэтому правильные звёздчатые многогранники называются телами Кеплера - Пуансо. Они получаются из правильных многогранников продолжением их граней или рёбер. Французский геометр Пуансо в 1810 году построил четыре правильных звёздчатых многогранника: малый звёздчатый додекаэдр, большой звёздчатый додекаэдр, большой додекаэдр и большой икосаэдр. У этих четырёх многогранников грани - пересекающиеся правильные многогранники, а у двух из них каждая из граней представляет собой самопересекающийся многоугольник. Но Пуансо не сумел доказать, что других правильных многогранников не существует.

Спустя год (в 1811г.) это сделал французский математик Огюстен Луи Коши (1789 - 1857). Он воспользовался тем, что согласно определению правильного многогранника, его можно наложить на самого себя так, что произвольная его грань совместится с наперёд выбранной. Из этого следует, что все грани звёздчатого многогранника равноудалены от некоторой точки-центра сферы, вписанной в многогранник.

Плоскости граней звёздчатого многогранника, пересекаясь, образуют ещё и правильный выпуклый многогранник, то есть платоново тело, описанное около той же сферы. Это платоново тело Коши назвал ядром данного звёздчатого многогранника. Тем самым звёздчатый многогранник можно получить, продолжая плоскости граней одного из платоновых тел.

Из тетраэдра, куба и октаэдра звёздчатые многогранники получить нельзя. Рассмотрим додекаэдр. Продолжение его рёбер приводит к замене каждой грани, звёздчатым правильным пятиугольником, а в результате получается малый звёздчатый додекаэдр.

На продолжении граней додекаэдра возможны следующие два случая: 1) если рассматривать правильные пятиугольники, то получается большой додекаэдр.

2) если же в качестве граней рассматривать звёздчатые пятиугольники, то получается большой звёздчатый додекаэдр.

Икосаэдр имеет одну звёздчатую форму. При продолжении грани правильного икосаэдра получается большой икосаэдр.

Таким образом, существует четыре типа правильных звёздчатых многогранников.

Звёздчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений.

Многие формы звёздчатых многогранников подсказывает сама природа. Снежинки – это звёздчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Заключение

В работе раскрыты следующие темы: правильные многогранники, построение правильных многогранников, самосовмещение, движение и симметрии, звёздчатые многогранники и их свойства. Мы узнали, что существует всего лишь пять правильных многогранника и четыре звёздчатых правильных многогранника, которые нашли широкое применение в различных областях.

Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли. Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Структура правильных многогранников очень удобна для изучения множества преобразований многогранника в себя (повороты, симметрии и т. д.). Получающиеся при этом группы преобразований (их называют группами симметрии) оказались весьма интересными с точки зрения теории конечных групп. Эта же симметричность позволила создать серию головоломок в виде правильных многогранников, начавшуюся «кубиком Рубиком» и «молдавской пирамидкой».

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 – 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине «Тайная вечеря» изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Трёхгранные и многогранные углы:
Трёхгранным углом называется фигура
образованная тремя плоскостями, ограниченными тремя лучами, исходящими из
одной точки и не лежащей в одной
плоскости.
Рассмотрим какой-нибудь плоский
многоугольник и точку лежащую вне
плоскости этого многоугольника.
Проведём из этой точки лучи,
проходящие через вершины
многоугольника. Мы получим фигуру,
которая называется многогранным
углом.

Трёхгранный угол - это часть пространства,
ограниченная тремя плоскими углами с общей
вершиной
и
попарно
общими
сторонами,
не
лежащими в одной плоскости. Общая вершина О этих
углов
называется
вершиной
трёхгранного
угла.
Стороны углов называются рёбрами, плоские углы
при вершине трёхгранного угла называются его
гранями. Каждая из трёх пар граней трёхгранного угла
образует двугранный угол

Основные свойства трехгранного угла
1. Каждый плоский угол трёхгранного угла меньше суммы
двух других его плоских углов.
+ > ; + > ; + >
α, β, γ - плоские углы,
A, B, C - двугранные углы, составленные плоскостями
углов β и γ, α и γ, α и β.
2. Сумма плоских углов трёхгранного угла меньше
360 градусов
3. Первая теорема косинусов
для трёхгранного угла
4. Вторая теорема косинусов для трёхгранного угла

,
5. Теорема синусов
Многогранный угол, внутренняя область которого
расположена по одну сторону от плоскости каждой из
его граней, называется выпуклым многогранным
углом. В противном случае многогранный угол
называется невыпуклым.

Многогранник- это тело, поверхность
которого состоит из конечного числа
плоских многоугольников.

Элементы многогранника
Грани многогранника - это
многоугольники, которые его
образуют.
Ребра многогранника - это стороны
многоугольников.
Вершины многогранника - это
вершины многоугольника.
Диагональ многогранника - это
отрезок, соединяющий 2 вершины,
не принадлежащие одной грани.

Многогранники
выпуклый
невыпуклый

Многогранник называется выпуклым,
если он расположен по одну сторону
плоскости каждого многоугольника на его
поверхности.

ВЫПУКЛЫЕ МНОГОГРАННЫЕ УГЛЫ

Многогранный угол называется выпуклым, если он является выпуклой
фигурой, т. е. вместе с любыми двумя своими точками целиком содержит и
соединяющий их отрезок.
На рисунке приведены примеры
выпуклого
и
невыпуклого
многогранных углов.
Теорема. Сумма всех плоских углов выпуклого многогранного угла меньше 360°.

ВЫПУКЛЫЕ МНОГОГРАННИКИ

Многогранник угол называется выпуклым, если он является выпуклой фигурой,
т. е. вместе с любыми двумя своими точками целиком содержит и соединяющий
их отрезок.
Куб, параллелепипед, треугольные призма и пирамида являются выпуклыми
многогранниками.
На рисунке приведены примеры выпуклой и невыпуклой пирамиды.

СВОЙСТВО 1

Свойство 1. В выпуклом многограннике все грани являются
выпуклыми многоугольниками.
Действительно, пусть F - какая-нибудь грань многогранника
M, и точки A, B принадлежат грани F. Из условия выпуклости
многогранника M, следует, что отрезок AB целиком содержится
в многограннике M. Поскольку этот отрезок лежит в плоскости
многоугольника F, он будет целиком содержаться и в этом
многоугольнике, т. е. F - выпуклый многоугольник.

СВОЙСТВО 2

Свойство 2. Всякий выпуклый многогранник может быть составлен из
пирамид с общей вершиной, основания которых образуют поверхность
многогранника.
Действительно, пусть M - выпуклый многогранник. Возьмем какую-нибудь
внутреннюю точку S многогранника M, т. е. такую его точку, которая не
принадлежит ни одной грани многогранника M. Соединим точку S с
вершинами многогранника M отрезками. Заметим, что в силу выпуклости
многогранника M, все эти отрезки содержатся в M. Рассмотрим пирамиды с
вершиной S, основаниями которых являются грани многогранника M. Эти
пирамиды целиком содержатся в M, и все вместе составляют многогранник M.

Правильные многогранники

Если грани многогранника являются
правильными многоугольниками с одним и
тем же числом сторон и в каждой вершине
многогранника сходится одно и то же число
ребер, то выпуклый многогранник
называется правильным.

Названия многогранников

пришли из Древней Греции,
в них указывается число граней:
«эдра» грань;
«тетра» 4;
«гекса» 6;
«окта» 8;
«икоса» 20;
«додека» 12.

Правильный тетраэдр

Рис. 1
Составлен из четырёх
равносторонних
треугольников. Каждая
его вершина является
вершиной трёх
треугольников.
Следовательно, сумма
плоских углов при
каждой вершине равна
180º.

Правильный октаэдр
Рис. 2
Составлен из восьми
равносторонних
треугольников. Каждая
вершина октаэдра
является вершиной
четырёх треугольников.
Следовательно, сумма
плоских углов при
каждой вершине 240º.

Правильный икосаэдр
Рис. 3
Составлен из двадцати
равносторонних
треугольников. Каждая
вершина икосаэдра
является вершиной пяти
треугольников.
Следовательно, сумма
плоских углов при
каждой вершине равна
300º.

Куб (гексаэдр)

Рис.
4
Составлен из шести
квадратов. Каждая
вершина куба является
вершиной трёх квадратов.
Следовательно, сумма
плоских углов при каждой
вершине равна 270º.

Правильный додекаэдр
Рис. 5
Составлен из двенадцати
правильных
пятиугольников. Каждая
вершина додекаэдра
является вершиной трёх
правильных
пятиугольников.
Следовательно, сумма
плоских углов при
каждой вершине равна
324º.

Таблица № 1
Правильный
многогранник
Число
граней
вершин
рёбер
Тетраэдр
4
4
6
Куб
6
8
12
Октаэдр
8
6
12
Додекаэдр
12
20
30
Икосаэдр
20
12
30

Формула Эйлера
Сумма числа граней и вершин любого
многогранника
равна числу рёбер, увеличенному на 2.
Г+В=Р+2
Число граней плюс число вершин минус число
рёбер
в любом многограннике равно 2.
Г+В Р=2

Таблица № 2
Число
Правильный
многогранник
Тетраэдр
граней и
вершин
(Г + В)
рёбер
(Р)
4+4=8
6
«тетра» 4;
Куб
6 + 8 = 14
12
«гекса»
6;
Октаэдр
8 + 6 = 14
12
«окта»
Додекаэдр
12 + 20 = 32
30
додека»
12.
30
«икоса»
20
Икосаэдр
20 + 12 = 32
8

Двойственность правильных многогранников

Гексаэдр (куб) и октаэдр образуют
двойственную пару многогранников. Число
граней одного многогранника равно числу
вершин другого и наоборот.

Возьмем любой куб и рассмотрим многогранник с
вершинами в центрах его граней. Как нетрудно
убедиться, получим октаэдр.

Центры граней октаэдра служат вершинами куба.

Многогранники в природе, химии и биологии
Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников.
Кристалл
пирита-
природная
модель
додекаэдр.
Кристаллы
поваренной
соли передают
форму куб.
Монокристалл
Сурьменистый
Хрусталь
алюминиевосернокислый
(призма)
калиевых квасцов натрий – тетраэдра.
имеет форму
октаэдра.
В молекуле
метана имеет
форму
правильного
тетраэдра.
Икосаэдр оказался в центре внимания биологов в их спорах относительно формы
вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы
установить его форму, брали различные многогранники, направляли на них свет
под теми же углами, что и поток атомов на вирус. Оказалось, что только один
многогранник дает точно такую же тень - икосаэдр.
В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем
октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец,
самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет
собой четырехмерную развертку (по оси времени) вращающегося додекаэдра!

Многогранники в искусстве
«Портрет Монны Лизы»
Композиция рисунка основана на золотых
треугольниках, являющихся частями
правильного звездчатого пятиугольника.
гравюра «Меланхолия»
На переднем плане картины
изображен додекаэдр.
«Тайная Вечеря»
Христос со своими учениками изображён на
фоне огромного прозрачного додекаэдр.

Многогранники в архитектуре
Музеи Плодов
Музеи Плодов в Яманаши создан с помощью
трехмерного моделирования.
Пирамиды
Александрийский маяк
Спасская башня
Кремля.
Четырехъярусная Спасская башня с церковью Спаса
Нерукотворного - главный въезд в Казанский кремль.
Возведена в XVI веке псковскими зодчими Иваном
Ширяем и Постником Яковлевым по прозванию
«Барма». Четыре яруса башни представляют из себя
куб, многогранники и пирамиду.

Содержание статьи

МНОГОГРАННИК, часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны – ребрами, а вершины – вершинами многогранника.

На рис. 1 представлены несколько известных многогранников. Первые два служат примерами р -угольных пирамид, т.е. многогранников, состоящих из р -угольника, называемого основанием, и р треугольников, примыкающих к основанию и имеющих общую вершину (называемую вершиной пирамиды). При р = 3 (см . рис. 1,а ) основанием может служить любая грань пирамиды. Пирамида, основание которой имеет форму правильного р -угольника, называется правильной р -угольной пирамидой. Так, можно говорить о квадратных, правильных пятиугольных и т.д. пирамидах. На рис. 1,в , 1,г и 1,д приведены примеры некоторого класса многогранников, вершины которых можно разделить на два множества из одинакового числа точек; точки каждого из этих множеств являются вершинами р -угольника, причем плоскости обоих p -угольников параллельны. Если эти два р -угольника (основания) конгруэнтны и расположены так, что вершины одного р р -угольника параллельными прямолинейными отрезками, то такой многогранник называется р -угольной призмой. Примерами двух р -угольных призм могут служить треугольная призма (р = 3) на рис. 1,в и пятиугольная призма (р = 5) на рис. 1,г . Если же основания расположены так, что вершины одного р -угольника соединены с вершинами другого р -угольника зигзагообразной ломаной, состоящей из 2р прямолинейных отрезков, как на рис. 1,д , то такой многогранник называется р -угольной антипризмой.

Кроме двух оснований, у р -угольной призмы имеются р граней – параллелограммов. Если параллелограммы имеют форму прямоугольников, то призма называется прямой, а если к тому же основаниями служат правильные р -угольники, то призма называется прямой правильной р -угольной призмой. р -угольная антипризма имеет (2p + 2) граней: 2р треугольных граней и два p -угольных основания. Если основаниями служат конгруэнтные правильные р -угольники, а прямая, соединяющая их центры, перпендикулярна их плоскостям, то антипризма называется прямой правильной р -угольной антипризмой.

В определении многогранника последняя оговорка сделана для того, чтобы исключить из рассмотрения такие аномалии, как две пирамиды с общей вершиной. Теперь мы введем дополнительное ограничение множества допустимых многогранников, потребовав, чтобы никакие две грани не пересекались, как на рис. 1,е . Любой многогранник, удовлетворяющий этому требованию, делит пространство на две части, одна из которых конечна и называется «внутренней». Другая, оставшаяся часть, называется внешней.

Многогранник называется выпуклым, если ни один прямолинейный отрезок, соединяющий любые две его точки, не содержит точек, принадлежащих внешнему пространству. Многогранники на рис. 1,а , 1,б , 1,в и 1,д выпуклые, а пятиугольная призма на рис. 1,г не выпуклая, так как, например, отрезок PQ содержит точки, лежащие во внешнем пространстве призмы.

ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Выпуклый многогранник называется правильным, если он удовлетворяет следующим двум условиям:

283(i) все его грани – конгруэнтные правильные многоугольники;

(ii) к каждой вершине примыкает одно и то же число граней.

Если все грани – правильные р -угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p , q }. Это обозначение было предложено Л.Шлефли (1814–1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе.

Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются «правильными звездчатыми многогранниками». Так как мы условились такие многогранники не рассматривать, то под правильными многогранниками мы будем понимать исключительно выпуклые правильные многогранники.

Платоновы тела.

На рис. 2 изображены правильные многогранники. Простейшим из них является правильный тетраэдр, гранями которого служат четыре равносторонних треугольника и к каждой из вершин примыкают по три грани. Тетраэдру соответствует запись {3, 3}. Это не что иное, как частный случай треугольной пирамиды. Наиболее известен из правильных многогранников куб (иногда называемый правильным гексаэдром) – прямая квадратная призма, все шесть граней которой – квадраты. Так как к каждой вершине примыкают по 3 квадрата, куб обозначается {4, 3}. Если две конгруэнтные квадратные пирамиды с гранями, имеющими форму равносторонних треугольников, совместить основаниями, то получится многогранник, называемый правильным октаэдром. Он ограничен восемью равносторонними треугольниками, к каждой из вершин примыкают по четыре треугольника, и следовательно, ему соответствует запись {3, 4}. Правильный октаэдр можно рассматривать и как частный случай прямой правильной треугольной антипризмы. Рассмотрим теперь прямую правильную пятиугольную антипризму, грани которой имеют форму равносторонних треугольников, и две правильные пятиугольные пирамиды, основания которых конгруэнтны основанию антипризмы, а грани имеют форму равносторонних треугольников. Если эти пирамиды присоединить к антипризме, совместив их основания, то получится еще один правильный многогранник. Двадцать его граней имеют форму равносторонних треугольников, к каждой вершине примыкают по пять граней. Такой многогранник называется правильным икосаэдром и обозначается {3, 5}. Помимо четырех названных выше правильных многогранников, существует еще один – правильный додекаэдр, ограниченный двенадцатью пятиугольными гранями; к каждой его вершине примыкают по три грани, поэтому додекаэдр обозначается как {5, 3}.

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона », захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. О том, что они не утратили свою притягательность и поныне, весьма убедительно свидетельствует картина испанского художника Сальвадора Дали Тайная вечеря .

Древними греками исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида . Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

Число правильных многогранников.

Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники. Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p , q } – произвольный правильный многогранник. Так как его гранями служат правильные р -угольники, их внутренние углы, как нетрудно показать, равны (180 – 360/р ) или 180 (1 – 2/р ) градусам. Так как многогранник {p , q } выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.

Все пять правильных многогранников перечислены в таблице, приведенной ниже. В трех последних столбцах указаны N 0 – число вершин, N 1 – число ребер и N 2 – число граней каждого многогранника.

К сожалению, приводимое во многих учебниках геометрии определение правильного многогранника неполно. Распространенная ошибка состоит в том, что в определении требуется лишь выполнение приведенного выше условия (i), но упускается из виду условие (ii). Между тем условие (ii) совершенно необходимо, в чем проще всего убедиться, рассмотрев выпуклый многогранник, удовлетворяющий условию (i), но не удовлетворяющий условию (ii). Простейший пример такого рода можно построить, отождествив грань правильного тетраэдра с гранью еще одного тетраэдра, конгруэнтного первому. В результате мы получим выпуклый многогранник, шестью гранями которого являются конгруэнтные равносторонние треугольники. Однако к одним вершинам примыкают три грани, а к другим – четыре, что нарушает условие (ii).

ПЯТЬ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ

Название

Запись Шлефли

N 0
(число вершин)

N 1
(число ребер)

N 2
(число граней)

Тетраэдр
Куб
Октаэдр
Икосаэдр
Додекаэдр

Свойства правильных многогранников.

Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой «описанной сферой», имеются еще две важные сферы. Одна из них, «срединная сфера», проходит через середины всех ребер, а другая, «вписанная сфера», касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Двойственные многогранники.

Рассмотрим правильный многогранник {p , q } и его срединную сферу S . Средняя точка каждого ребра касается сферы. Заменяя каждое ребро отрезком перпендикулярной прямой, касательной к S в той же точке, мы получим N 1 ребер многогранника, двойственного многограннику {p , q }. Нетрудно показать, что гранями двойственного многогранника служат правильные q -угольники и что к каждой вершине примыкают р граней. Следовательно, многограннику {p , q } двойствен правильный многогранник {q , p }. Многограннику {3, 3} двойствен другой многогранник {3, 3}, конгруэнтный исходному (поэтому {3, 3} называется самодвойственным многогранником), многограннику {4, 3} двойствен многогранник {3, 4}, а многограннику {5, 3} – многогранник {3, 5}. На рис. 3 многогранники {4, 3} и {3, 4} показаны в положении двойственности друг другу. Кроме того, каждой вершине, каждому ребру и каждой грани многогранника {p , q } соответствует единственная грань, единственное ребро и единственная вершина двойственного многогранника {q , p }. Следовательно, если {p , q } имеет N 0 вершин, N 1 ребер и N 2 граней, то {q , p } имеет N 2 вершин, N 1 ребер и N 0 граней.

Так как каждая из N 2 граней правильного многогранника {p , q } ограничена р ребрами и каждое ребро является общим ровно для двух граней, то всего имеется pN 2 /2 ребер, поэтому N 1 = pN 2 /2. У двойственного многогранника {q , p } ребер также N 1 и N 0 граней, поэтому N 1 = qN 0 /2. Таким образом, числа N 0 , N 1 и N 2 для любого правильного многогранника {p , q } связаны соотношением

Симметрия.

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани.

Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р -угольной призмы. Пусть l – прямая, соединяющая центры оснований. Поворот вокруг l на любое целое кратное угла 360/р градусов является симметрией. Пусть, далее, p – плоскость, проходящая посредине между основаниями параллельно им. Отражение относительно плоскости p (движение, переводящее любую точку P в точку P ў , такую, что p пересекает отрезок PP ў под прямым углом и делит его пополам) – еще одна симметрия. Комбинируя отражение относительно плоскости p с поворотом вокруг прямой l , мы получим еще одну симметрию.

Любую симметрию многогранника можно представить в виде произведения отражений. Под произведением нескольких движений многогранника как твердого тела здесь понимается выполнение отдельных движений в определенном заранее установленном порядке. Например, упоминавшийся выше поворот на угол 360/р градусов вокруг прямой l есть произведение отражений относительно любых двух плоскостей, содержащих l и образующих относительно друг друга угол в 180/р градусов. Симметрия, являющаяся произведением четного числа отражений, называется прямой, в противном случае – обратной. Таким образом, любой поворот вокруг прямой – прямая симметрия. Любое отражение есть обратная симметрия.

Рассмотрим подробнее симметрии тетраэдра, т.е. правильного многогранника {3, 3}. Любая прямая, проходящая через любую вершину и центр тетраэдра, проходит через центр противоположной грани. Поворот на 120 или 240 градусов вокруг этой прямой принадлежит к числу симметрий тетраэдра. Так как у тетраэдра 4 вершины (и 4 грани), то мы получим всего 8 прямых симметрий. Любая прямая, проходящая через центр и середину ребра тетраэдра проходит через середину противоположного ребра. Поворот на 180 градусов (полуоборот) вокруг такой прямой также является симметрией. Так как у тетраэдра 3 пары ребер, мы получаем еще 3 прямые симметрии. Следовательно, общее число прямых симметрий, включая тождественное преобразование, доходит до 12. Можно показать, что других прямых симметрий не существует и что имеется 12 обратных симметрий. Таким образом, тетраэдр допускает всего 24 симметрии. Для наглядности полезно построить картонную модель правильного тетраэдра и убедиться, что тетраэдр действительно обладает 24 симметриями. Развертки, которые можно вырезать из тонкого картона и, сложив, склеить из них пять правильных многогранников, приведены на рис. 4.

Прямые симметрии остальных правильных многогранников можно описать не по отдельности, а все вместе. Условимся понимать под {p , q } любой правильный многогранник, кроме {3, 3}. Прямая, проходящая через центр {p , q } и любую вершину, проходит через противоположную вершину, и любой поворот на целое кратное 360/q градусов вокруг этой прямой является симметрией. Следовательно, для каждой такой прямой существуют, включая тождественное преобразование, (q – 1) различных симметрий. Каждая такая прямая соединяет две из N 0 вершин; следовательно, всего таких прямых – N 0 /2, что дает (q – 1) > N 0 /2 симметрий. Кроме того, прямая, проходящая через центр многогранника {p , q } и центр любой грани, проходит через центр противоположной грани, и любой поворот вокруг такой прямой на целое кратное 360/р градусов является симметрией. Так как общее число таких линий равно N 2 /2, где N 2 – число граней многогранника {p , q }, мы получаем (p – 1) N 2 /2 различных симметрий, включая тождественное преобразование. Наконец, прямая, проходящая через центр и середину любого ребра многогранника {p , q }, проходит через середину противоположного ребра, и симметрией является полуоборот вокруг этой прямой. Поскольку имеется N 1 /2 таких прямых, где N 1 – число ребер многогранника {p , q }, мы получаем еще N 1 /2 симметрий. С учетом тождественного преобразования получаем

прямых симметрий. Других прямых симметрий нет, и имеется столько же обратных симметрий.

Хотя формула (3) была получена не для многогранника {3, 3}, нетрудно проверить, что она верна и для него. Таким образом, многогранник {3, 3} обладает 12 прямыми симметриями, многогранники {4, 3} и {3, 4} имеют по 24 симметрии, а многогранники {5, 3} и {3, 5} – по 60 симметрий.

Читатели, знакомые с абстрактной алгеброй, поймут, что симметрии многогранника {p , q } образуют группу относительно определенного выше «умножения». В этой группе прямые симметрии образуют подгруппу индекса 2, а обратные симметрии группу не образуют, так как нарушают свойство замкнутости и не содержат тождественного преобразования (единичного элемента группы). Обычно о группе прямых симметрий говорят как о группе многогранника, а полную группу симметрий называют его расширенной группой. Из рассмотренных выше свойств двойственных многогранников ясно, что любой правильный многогранник и двойственный ему многогранник имеют одну и ту же группу. Группа тетраэдра называется тетраэдрической группой, группа куба и октаэдра называется октаэдрической группой, а группа додекаэдра и икосаэдра – икосаэдрической группой. Они изоморфны знакопеременной группе А 4 из четырех символов, симметрической группе S 4 из четырех символов и знакопеременной группе А 5 из пяти символов соответственно .

ФОРМУЛА ЭЙЛЕРА

Рассматривая таблицу, можно заметить интересное соотношение между числом вершин N 0 , числом ребер N 1 и числом граней N 2 любого выпуклого правильного многогранника {p , q }. Речь идет о соотношении

Подставляя полученные выражения в формулы (3) и (4), получаем, что число прямых симметрий многогранника {p , q } равно

Это число можно записать также в одной из эквивалентных форм: qN 0 , 2N 1 или pN 2 .

Область применения формулы Эйлера.

Значимость формулы Эйлера усиливается тем, что она применима не только к платоновым телам, но и к любому многограннику, гомеоморфному сфере (см . ТОПОЛОГИЯ) . Это утверждение доказывается следующим образом.

Пусть P – любой многогранник, гомеоморфный сфере, с N 0 вершинами, N 1 ребрами и N 2 гранями; пусть c = N 0 – N 1 + N 2 – эйлерова характеристика многогранника P . Требуется доказать, что c = 2. Так как Р гомеоморфен сфере, мы можем удалить одну грань и превратить остальные в некоторую конфигурацию на плоскости (например, на рис. 5,а и 5,б вы видите призму, у которой удалена передняя плоскость). «Плоскостная конфигурация» представляет собой сеть точек и прямолинейных отрезков, называемых соответственно «вершинами» и «ребрами», при этом вершины служат концами ребер. Вершины и ребра рассматриваемой нами конфигурации мы считаем смещенными и деформированными вершинами и ребрами многогранника. Таким образом, эта конфигурация имеет N 0 вершин и N 1 ребер. Остальные N 2 – 1 граней многогранника деформируются в N 2 – 1 непересекающихся областей на плоскости, определяемой конфигурацией. Назовем эти области «гранями» конфигурации. Вершины, ребра и грани конфигурации и определяют эйлерову характеристику, которая в данном случае равна c – 1.

Теперь мы проведем сплющивание так, что если удаленная грань была р -угольником, то все N 2 – 1 граней конфигурации заполнят внутренность р -угольника. Пусть А – некоторая вершина внутри р -угольника. Предположим, что в А сходятся r ребер. Если удалить А и все r сходящихся в ней ребер, то число вершин уменьшится на 1, ребер – на r , граней – на r – 1 (см . рис. 5,б и 5,в ). У новой конфигурации 0 = N 0 – 1 вершин, 1 = N 1 – r ребер и 2 = N 2 – 1 – (r – 1) граней; следовательно,

Таким образом, удаление одной внутренней вершины и сходящихся в ней ребер не меняет эйлеровой характеристики конфигурации. Поэтому, удалив все внутренние вершины и сходящиеся в них ребра, мы тем самым сведем конфигурацию к р -угольнику и его внутренности (рис. 5,г ). Но эйлерова характеристика останется по-прежнему равной c – 1, а так как конфигурация имеет р вершин, р ребер и 1 грань, мы получаем

Таким образом, c = 2, что и требовалось доказать.

Далее можно доказать, что если эйлерова характеристика многогранника равна 2, то многогранник гомеоморфен сфере. Иначе говоря, мы можем обобщить полученный выше результат, показав, что многогранник гомеоморфен сфере в том и только в том случае, если его эйлерова характеристика равна 2.

Обобщенная формула Эйлера.

Для классификации других многогранников используется обобщенная формула Эйлера. Если у некоторого многогранника 16 вершин, 32 ребра и 16 граней, то его эйлерова характеристика равна 16 – 32 + 16 = 0. Это позволяет утверждать, что данный многогранник принадлежит классу многогранников, гомеоморфных тору. Отличительной особенностью этого класса является эйлерова характеристика, равная нулю. Более общо, пусть Р – многогранник с N 0 вершинами, N 1 ребрами и N 2 гранями. Говорят, что данный многогранник гомеоморфен поверхности рода n в том и только в том случае, если

Наконец, следует заметить, что ситуация существенно усложняется, если смягчить прежнее ограничение, согласно которому никакие две грани многогранника не должны пересекаться. Например, появляется возможность существования двух негомеоморфных многогранников с одной и той же эйлеровой характеристикой. Их следует различать по другим топологическим свойствам.

Многогранники не только занимают видное место в геометрии, но и встречаются в повседневной жизни каждого человека. Не говоря уже об искусственно созданных предметах обихода в виде различных многоугольников, начиная со спичечного коробка и заканчивая архитектурными элементами, в природе также встречаются кристаллы в форме куба (соль), призмы (хрусталь), пирамиды (шеелит), октаэдра (алмаз) и т. д.

Понятие многогранника, виды многогранников в геометрии

Геометрия как наука содержит раздел стереометрию, изучающую характеристики и свойства объёмных тела, стороны которых в трёхмерном пространстве образованы ограниченными плоскостями (гранями), носят название "многогранники". Виды многогранников насчитывают не один десяток представителей, отличающихся количеством и формой граней.

Тем не менее у всех многогранников есть общие свойства:

  1. Все они имеют 3 неотъемлемых компонента: грань (поверхность многоугольника), вершина (углы, образовавшиеся в местах соединения граней), ребро (сторона фигуры или отрезок, образованный в месте стыка двух граней).
  2. Каждое ребро многоугольника соединяет две, и только две грани, которые по отношению друг к другу являются смежными.
  3. Выпуклость означает, что тело полностью расположено только по одну сторону плоскости, на которой лежит одна из граней. Правило применимо ко всем граням многогранника. Такие геометрические фигуры в стереометрии называют термином выпуклые многогранники. Исключение составляют звёздчатые многогранники, которые являются производными правильных многогранных геометрических тел.

Многогранники можно условно разделить на:

  1. Виды выпуклых многогранников, состоящих из следующих классов: обычные или классические (призма, пирамида, параллелепипед), правильные (также называемые Платоновыми телами), полуправильные (второе название - Архимедовы тела).
  2. Невыпуклые многогранники (звёздчатые).

Призма и её свойства

Стереометрия как раздел геометрии изучает свойства трёхмерных фигур, виды многогранников (призма в их числе). Призмой называют геометрическое тело, которое имеет обязательно две совершенно одинаковые грани (их также называют основаниями), лежащие в параллельных плоскостях, и n-ое число боковых граней в виде параллелограммов. В свою очередь, призма имеет также несколько разновидностей, в числе которых такие виды многогранников, как:

  1. Параллелепипед - образуется, если в основании лежит параллелограмм - многоугольник с 2 парами равных противоположных углов и двумя парами конгруэнтных противоположных сторон.
  2. имеет перпендикулярные к основанию рёбра.
  3. характеризуется наличием непрямых углов (отличных от 90) между гранями и основанием.
  4. Правильная призма характеризуется основаниями в виде с равными боковыми гранями.

Основные свойства призмы:

  • Конгруэнтные основания.
  • Все рёбра призмы равны и параллельны по отношению друг к другу.
  • Все боковые грани имеют форму параллелограмма.

Пирамида

Пирамидой называют геометрическое тело, которое состоит из одного основания и из n-го числа треугольных граней, соединяющихся в одной точке - вершине. Следует отметить, что если боковые грани пирамиды представлены обязательно треугольниками, то в основании может быть как треугольный многоугольник, так и четырёхугольник, и пятиугольник, и так до бесконечности. При этом название пирамиды будет соответствовать многоугольнику в основании. Например, если в основании пирамиды лежит треугольник - это , четырёхугольник - четырёхугольная, и т. д.

Пирамиды - это конусоподобные многогранники. Виды многогранников этой группы, кроме вышеперечисленных, включают также следующих представителей:

  1. имеет в основании правильный многоугольник, и высота ее проектируется в центр окружности, вписанной в основание или описанной вокруг него.
  2. Прямоугольная пирамида образуется тогда, когда одно из боковых рёбер пересекается с основанием под прямым углом. В таком случае это ребро справедливо также назвать высотой пирамиды.

Свойства пирамиды:

  • В случае если все боковые рёбра пирамиды конгруэнтны (одинаковой высоты), то все они пересекаются с основанием под одним углом, а вокруг основания можно прочертить окружность с центром, совпадающим с проекцией вершины пирамиды.
  • Если в основании пирамиды лежит правильный многоугольник, то все боковые рёбра конгруэнтны, а грани являются равнобедренными треугольниками.

Правильный многогранник: виды и свойства многогранников

В стереометрии особое место занимают геометрические тела с абсолютно равными между собой гранями, в вершинах которых соединяется одинаковое количество рёбер. Эти тела получили название Платоновы тела, или правильные многогранники. Виды многогранников с такими свойствами насчитывают всего пять фигур:

  1. Тетраэдр.
  2. Гексаэдр.
  3. Октаэдр.
  4. Додекаэдр.
  5. Икосаэдр.

Своим названием правильные многогранники обязаны древнегреческому философу Платону, описавшему эти геометрические тела в своих трудах и связавшему их с природными стихиями: земли, воды, огня, воздуха. Пятой фигуре присуждали сходство со строением Вселенной. По его мнению, атомы природных стихий по форме напоминают виды правильных многогранников. Благодаря своему самому захватывающему свойству - симметричности, эти геометрические тела представляли большой интерес не только для древних математиков и философов, но и для архитекторов, художников и скульпторов всех времён. Наличие всего лишь 5 видов многогранников с абсолютной симметрией считалось фундаментальной находкой, им даже присуждали связь с божественным началом.

Гексаэдр и его свойства

В форме шестигранника преемники Платона предполагали сходство со строением атомов земли. Конечно же, в настоящее время эта гипотеза полностью опровергнута, что, однако, не мешает фигурам и в современности привлекать умы известных деятелей своей эстетичностью.

В геометрии гексаэдр, он же куб, считается частным случаем параллелепипеда, который, в свою очередь, является разновидностью призмы. Соответственно и свойства куба связаны со с той лишь разницей, что все грани и углы куба равны между собой. Из этого вытекают следующие свойства:

  1. Все рёбра куба конгруэнтны и лежат в параллельных плоскостях по отношению друг к другу.
  2. Все грани - конгруэнтные квадраты (всего в кубе их 6), любой из которых может быть принят за основание.
  3. Все межгранные углы равны 90.
  4. Из каждой вершины исходит равное количество рёбер, а именно 3.
  5. Куб имеет 9 которые все пересекаются в точке пересечения диагоналей гексаэдра, именуемой центром симметрии.

Тетраэдр

Тетраэдр - это четырёхгранник с равными гранями в форме треугольников, каждая из вершин которых является точкой соединения трёх граней.

Свойства правильного тетраэдра:

  1. Все грани тетраэда - это из чего следует, что все грани четырёхгранника конгруэнтны.
  2. Так как основание представлено правильной геометрической фигурой, то есть имеет равные стороны, то и грани тетраэдра сходятся под одинаковым углом, то есть все углы равны.
  3. Сумма плоских углов при каждой из вершин равняется 180, так как все углы равны, то любой угол правильного четырёхгранника составляет 60.
  4. Каждая из вершин проецируется в точку пересечения высот противоположной (ортоцентр) грани.

Октаэдр и его свойства

Описывая виды правильных многогранников, нельзя не отметить такой объект, как октаэдр, который визуально можно представить в виде двух склеенных основаниями четырёхугольных правильных пирамид.

Свойства октаэдра:

  1. Само название геометрического тела подсказывает количество его граней. Восьмигранник состоит из 8 конгруэнтных равносторонних треугольников, в каждой из вершин которого сходится равное количество граней, а именно 4.
  2. Так как все грани октаэдра равны, равны и его межгранные углы, каждый из которых равняется 60, а сумма плоских углов любой из вершин составляет, таким образом, 240.

Додекаэдр

Если представить, что все грани геометрического тела представляют собой правильный пятиугольник, то получится додекаэдр - фигура из 12 многоугольников.

Свойства додекаэдра:

  1. В каждой вершине пересекаются по три грани.
  2. Все грани равны и имеют одинаковую длину рёбер, а также равную площадь.
  3. У додекаэдра 15 осей и плоскостей симметрии, причём любая из них проходит через вершину грани и середину противоположного ей ребра.

Икосаэдр

Не менее интересная, чем додекаэдр, фигура икосаэдр представляет собой объёмное геометрическое тело с 20 равными гранями. Среди свойств правильного двадцатигранника можно отметить следующие:

  1. Все грани икосаэдра - равнобедренные треугольники.
  2. В каждой вершине многогранника сходится пять граней, и сумма смежных углов вершины составляет 300.
  3. Икосаэдр имеет так же, как и додекаэдр, 15 осей и плоскостей симметрии, проходящих через середины противоположных граней.

Полуправильные многоугольники

Кроме Платоновых тел, в группу выпуклых многогранников входят также Архимедовы тела, которые представляют собой усечённые правильные многогранники. Виды многогранников данной группы обладают следующими свойствами:

  1. Геометрические тела имеют попарно равные грани нескольких типов, например, усечённый тетраэдр имеет так же, как и правильный тетраэдр, 8 граней, но в случае Архимедова тела 4 грани будут треугольной формы и 4 - шестиугольной.
  2. Все углы одной вершины конгруэнтны.

Звёздчатые многогранники

Представители необъёмных видов геометрических тел - звёздчатые многогранники, грани которых пересекаются друг с другом. Они могут быть образованы путём слияния двух правильных трёхмерных тел либо в результате продолжения их граней.

Таким образом, известны такие звёздчатые многогранники, как: звёздчатые формы октаэдра, додекаэдра, икосаэдра, кубооктаэдра, икосододекаэдра.

Вверх