Стандарты беспроводной связи. Сети WiFi

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Инфракрасный порт

Инфракрасный порт, по-другому Infrared Data Association -- IrDA, ИК-порт, это группа стандартов, описывающая протоколы физического и логического уровня передачи данных с использованием инфракрасного диапазона световых волн в качестве среды передачи. Инфракрасный порт является разновидностью оптической линии связи ближнего радиуса действия.

Была особо популярна в конце 1990-х начале 2000-х годов. В данное время практически вытеснена более современными способами связи, такими как WiFi и Bluetooth. Основные причины отказа от ИК-портов были:

1. Усложнение сборки корпусов устройств, в которых монтировалось прозрачное окно, через которое и работал ИК-порт.

2. Ограниченная дальность действия и требования прямой видимости пары приемник-передатчик.

3. Относительно низкая скорость передачи данных первых реализаций стандарта. В последующих ревизиях стандарта этот недостаток исправили: скоростные возможности немного превышают, например, возможности самой распространенной, на сегодняшний момент, версии протокола Bluetooth (спецификация 4.0). Однако широкого распространения скоростные варианты IrDA получить уже не успели.

Аппаратная реализация, обычно, представляет собой пару из излучателя и приемника. Излучатель представляет собой инфракрасный светодиод. Приемник же представлен в виде фотодиода. Наличие и передатчика и приемника на каждой из сторон является необходимым для гарантированной доставки данных.

В повседневной жизни мы постоянно сталкиваемся с ИК-портами. Например, дистанционный пульт управления передает команды на телевизор или видеомагнитофон с помощью IrDA. До недавнего времени ИК-портами оснащалась большая часть мобильных телефонов, ноутбуков и карманных компьютеров. Также ими оснащаются некоторые принтеры и цифровые фотоаппараты. Большинство настольных ПК, напротив, не имеет инфракрасного порта в стандартной системной конфигурации, и для них необходим ИК-адаптер, который подключается к компьютеру через USB-порт или в специальный разъем на материнской плате.

Через ИК-порт, с помощью протоколов высокого уровня, например IrOBEX, можно, например, передать цифровую визитную карточку, мелодию, картинку или файл на другой мобильник или компьютер, на котором также имеется ИК-порт. Этот же протокол позволяет организовывать синхронизацию данных. Через другие протоколы, например IrCOMM и IrLAN, можно изпользовать мобильный телефон в качестве беспроводного модема или же связывать устройства в локальную сеть, наподобие Ethernet.

Так как пульты дистанционного управления использовали тот же протокол, что и мобильные устройства, с помощь КПК можно было управлять устройством, как и пультом управления. Но для этого приходилось использовать дополнительное программное обеспечение.

Bluetooth (дословно переводится как синий зуб) -- спецификация беспроводных персональных сетей. Bluetooth обеспечивает обмен информацией между такими устройствами как персональные компьютеры (настольные, карманные, ноутбуки), мобильные телефоны, принтеры и многие другие устройства на бесплатной, повсеместно доступной радиочастоте для ближней связи.

Bluetooth позволяет этим устройствам сообщаться, когда они находятся в радиусе до 100 метров друг от друга, однако дальность сильно зависит от преград и помех, даже в разных помещениях.

Слово Bluetooth -- перевод на английский язык датского слова «Blеtand» («Синезубый»). Так прозвали когда-то короля викингов Харальда I Синезубого, жившего в Дании около тысячи лет назад.

Прозвище это король получил за темный передний зуб. Харальд I правил в X веке Данией и частью Норвегии и объединил враждовавшие датские племена в единое королевство. Подразумевается, что Bluetooth делает то же самое с протоколами связи, объединяя их в один универсальный стандарт.

Работы по созданию Bluetooth начал производитель телекоммуникационного оборудования Ericsson в 1994 году как беспроводную альтернативу кабелям RS-232. Первоначально эта технология была приспособлена под потребности системы FLYWAY в функциональном интерфейсе между путешественниками и системой.

Принцип действия основан на использовании радиоволн. Радиосвязь Bluetooth осуществляется в ISM-диапазоне, который используется в различных бытовых приборах и беспроводных сетях (свободный от лицензирования диапазон 2,4-2,48 ГГц).

В Bluetooth применяется метод расширения спектра со скачкообразной перестройкой частоты, так называемый FHSS. Этот метод прост в реализации, обеспечивает устойчивость к широкополосным помехам, а оборудование недорого.

Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelity, которое можно дословно перевести как «беспроводное качество» или «беспроводная точность») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Термин «Wi-Fi» изначально был придуман как игра слов для привлечения внимания потребителя «намёком» на Hi-Fi (англ. High Fidelity -- высокая точность). Несмотря на то, что поначалу в некоторых пресс-релизах WECA фигурировало словосочетание «Wireless Fidelity» («беспроводная точность»), на данный момент от такой формулировки отказались, и термин «Wi-Fi» никак не расшифровывается.

Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка (Ad-hoc), когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую».

Точка доступа передаёт свой идентификатор сети, называемый SSID, с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с -- наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа.

При попадании приемника в зону действия двух точек доступа с одинаковым идентификатором, он выбирает между ними на основании уровня сигнала. Стандарт Wi-Fi даёт клиенту полную свободу при выборе критериев для соединения.

Преимущества Wi-Fi:

1. Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.

2. Позволяет иметь доступ к сети мобильным устройствам.

3. Wi-Fi устройства широко распространены на рынке. Гарантируется совместимость оборудования благодаря обязательной сертификации оборудования с логотипом Wi-Fi.

4. Мобильность. Вы больше не привязаны к одному месту и можете пользоваться Интернетом в комфортной для вас обстановке.

5. В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.

6. Излучение от Wi-Fi устройств в момент передачи данных на порядок (в 10 раз) меньше, чем у сотового телефона.

беспроводной связь инфракрасный порт

WiMAX (англ. Worldwide Interoperability for Microwave Access) -- телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN (WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован).

WiMAX подходит для решения следующих задач:

1. Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.

2. Обеспечения беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL.

3. Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

4. Создания точек доступа, не привязанных к географическому положению.

5. Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе SCADA.

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с более большим покрытием, чем у Wi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

WiMax позволяет передавать данные по радиоканалу (подобно мобильной связи) в городских условиях, не смотря на застройки, деревья или погодные условия. Передатчики WiMax устанавливаются провайдерами в различных районах города и позволяют подключаться к интернету в пределах всей зоны покрытия с помощью компьютера или мобильного телефона, поддерживающего WiMax. Кроме доступа к интернету WiMax используется для высококачественной голосовой и видео-связи.

Сравнительная таблица стандартов беспроводной связи

Технология

Стандарт

Пропускная способность

Радиус действия

до 54 Мбит/с

до 300 метров

до 11 Мбит/с

до 300 метров

до 54 Мбит/с

до 300 метров

до 450 Мбит/с (в перспективе до 600 Мбит/с)

до 300 метров

2,4 -- 2,5 или 5,0 ГГц

до 75 Мбит/с

до 40 Мбит/с

до 1 Гбит/с (WMAN), до 100 Мбит/с (Mobile WMAN)

120-150 км (стандарт в разработке)

н\д (стандарт в разработке)

до 1 Мбит/с

до 10 метров

до 2,1 Мбит/с

до 100 метров

от 3 Мбит/с до 24 Мбит/с

до 100 метров

Инфракрасная линия связи

до 16 Мбит/с

от 5 до 50 сантиметров, односторонняя связь -- до 10 метров

Инфракрасное излучение

Размещено на Allbest.ru

...

Подобные документы

    Понятие беспроводной связи, организация доступа к сети связи, к интернету. Классификация беспроводных сетей: спутниковые сотовые модемы, инфракрасные каналы, радиорелейная связь, Bluetooth. WI-FI - технология передачи данных по радиоканалу, преимущества.

    реферат , добавлен 06.06.2012

    История создания технологий беспроводного доступа. Описания набора стандартов связи для коммуникации в беспроводной локальной сетевой зоне. Исследование принципа работы беспроводной связи Wi-Fi. Анализ рынка инфраструктуры Wi-Fi операторского класса.

    презентация , добавлен 28.10.2014

    Осуществление беспроводной передачи данных по технологиям ближней связи, применяемые в мобильных устройствах. IrDA: преимущества и недостатки. Bluetooth для мобильной связи, потребность в устройствах, частотный конфликт. Системные и технические аспекты.

    реферат , добавлен 23.04.2009

    Современные системы телекоммуникаций; основные стандарты подвижной связи GSM, CDMA 200, UMTS. Использование операторами сотовых сетей новых услуг и технологий 3-го поколения. Характеристики новейших стандартов беспроводного доступа: Wi-Fi, Bluetooth.

    учебное пособие , добавлен 08.11.2011

    Характеристика и разновидности беспроводных сетей, их назначение. Описание технологии беспроводного доступа в интернет Wi-Fi, протоколы безопасности. Стандарты связи GSM, механизмы аутентификации. Технология ближней беспроводной радиосвязи Вluetooth.

    курсовая работа , добавлен 31.03.2013

    Анализ технологий беспроводной связи в городе Алматы. Технология проектирования сети WiMAX. Базовая станция Aperto PacketMax-5000 на объекте ЦА АО "Казахтелеком" (ОПТС-6). Расчет параметров сети и оптимизации пакета. Финансовый план построения сети.

    дипломная работа , добавлен 01.04.2014

    Основные характеристики стандарта WiMAX, архитектура построения сети. Принципы построение сетей WiMAX в посёлке городского типа. Выбор аппаратуры и расчет сети. Расчет капитальных вложений, доходов и срока окупаемости. Мероприятия по технике безопасности.

    дипломная работа , добавлен 22.06.2012

    Естественнонаучные открытия в области электротехники. Первые устройства беспроводной связи. Формирование научных основ радиотехники. Начало беспроводной связи. Внедрение радиостанций в массовое производство. История радио и "беспроводной телеграфии".

    реферат , добавлен 10.06.2015

    Анализ стандарта беспроводной передачи данных. Обеспечение безопасности связи, основные характеристики уязвимости в стандарте IEEE 802.16. Варианты построения локальных вычислительных сетей. Виды реализаций и взаимодействия технологий WiMAX и Wi-Fi.

    курсовая работа , добавлен 13.12.2011

    Что такое ТСР? Принцип построения транкинговых сетей. Услуги сетей тракинговой связи. Технология Bluetooth - как способ беспроводной передачи информации. Некоторые аспекты практического применения технологии Bluetooth. Анализ беспроводных технологий.

Большинство используемых в настоящее время стандартов беспроводных сетей разработано Институтом инженеров по электротехнике и радиоэлектронике (Institute of Electrical and Electronics Engineers, IEEE).

Беспроводные сети можно разделить на персональные (WPAN), локальные (WLAN), городские (WMAN) и глобальные (WWAN) сети.

Стандарты IEEE относятся только к трем последним типам беспроводных сетей.

Персональные беспроводные сети находятся в ведении рабочей группы стандарта 802.15. В рамках стандарта определено четыре группы, решающие различные задачи.

Персональные беспроводные сети

Таб.1. Стандарты 802.15.x

Локальные беспроводные сети

Наиболее распространенным стандартом беспроводных сетей является технология IEEE 802.11, это стандарт организации беспроводных коммуникаций на ограниченной территории в режиме локальной сети, т.е. когда несколько абонентов имеют равноправный доступ к общему каналу передач. Пользователям более известен по названию Wi-Fi, фактически являющимся брендом, предложенным и продвигаемым организацией Wi-Fi Alliance.

Таб.2. Стандарты 802.11.x

Стандарт

Описание стандарта

изначальный 1 Мбит/с и 2 Мбит/c, 2,4 ГГц и ИК стандарт (1997)

54 Мбит/c, 5 ГГц стандарт (1999, выход продуктов в 2001)

улучшения к 802.11 для поддержки 5,5 и 11 Мбит/с (1999)

процедуры операций с мостами; включен в стандарт IEEE 802.1D (2001)

интернациональные роуминговые расширения (2001)

улучшения: QoS, включение packet bursting (2005)

54 Мбит/c, 2,4 ГГц стандарт (обратная совместимость с b) (2003)

распределённый по спектру 802.11a (5 GHz) для совместимости в Европе (2004)

улучшенная безопасность (2004)

расширения для Японии (2004)

улучшения измерения радио ресурсов

зарезервирован

поддержание эталона; обрезки

увеличение скорости передачи данных (600 Мбит/c). 2,4-2,5 или 5 ГГц. Обратная совместимость с 802.11a/b/g

зарезервирован

WAVE - Wireless Access for the Vehicular Environment (Беспроводной Доступ для Транспортной Среды, такой как машины скорой помощи или пассажирский транспорт)

зарезервирован

быстрый роуминг

ESS Mesh Networking (англ.) (Extended Service Set - Расширенный Набор Служб; Mesh Network - Ячеистая Сеть)

взаимодействие с не-802 сетями (например, сотовые сети)

управление беспроводными сетями

зарезервирован и не будет использоваться

дополнительный стандарт связи, работающий на частотах 3,65-3,70 ГГц. Обеспечивает скорость до 54 Мb/с на расстоянии до 5000 м на открытом пространстве.

Protected Management Frames (Защищенные Управляющие Фреймы)

новый, разрабатываемый IEEE стандарт. Скорости передачи данных до 1.3 Гбит/c, энергопотребление по сравнению с 802.11n снижено до 6 раз. Обратная совместимость с 802.11a/b/g/n.

новый стандарт с дополнительным диапазоном 60 ГГц (частота не требует лицензирования). Скорость передачи данных до 7 Гбит/с.

Из всех существующих стандартов беспроводной передачи данных IEEE 802.11, на практике наиболее часто используются всего четыре, это: 802.11a, 802.11b, 802.11g и 802.11n.

Стандарт IEEE 802.11a имеет большую ширину полосы из семейства стандартов 802.11, предусматривая скорость передачи данных до 54 Мбит/с. В отличие от базового стандарта, ориентированного на область частот 2,4 ГГц, спецификациями 802.11a предусмотрена работа в диапазоне 5 ГГц. В качестве метода модуляции сигнала выбрано ортогональное частотное мультиплексирование (OFDM). К недостаткам 802.11a относятся более высокая потребляемая мощность радиопередатчиков для частот 5 ГГц, а так же меньший радиус действия.

В стандарте IEEE 802.11b скорость передачи данных до 11 Мбит/с, работает в диапазоне 2,4 ГГц, этот стандарт завоевал наибольшую популярность у производителей оборудования для беспроводных сетей. Поскольку оборудование, работающее на максимальной скорости 11 Мбит/с имеет меньший радиус действия, чем на более низких скоростях, то стандартом 802.11b предусмотрено автоматическое понижение скорости при ухудшении качества сигнала.

Стандарт IEEE 802.11g является логическим развитием 802.11b и предполагает передачу данных в том же частотном диапазоне. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с, поэтому на сегодняшний день это наиболее перспективный стандарт беспроводной связи.

Стандарт 802.11n повышает скорость передачи данных практически вчетверо по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 МБит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 480 Мбит/с. Устройства 802.11n работают в диапазонах 2,4 - 2,5 или 5,0 ГГц.

Кроме того, устройства 802.11n могут работать в трёх режимах: наследуемом (Legacy), в котором обеспечивается поддержка устройств 802.11b/g и 802.11a смешанном (Mixed), в котором поддерживаются устройства 802.11b/g, 802.11a и 802.11n «чистом» режиме - 802.11n (именно в этом режиме и можно воспользоваться преимуществами повышенной скорости и увеличенной дальностью передачи данных, обеспечиваемыми стандартом 802.11n).

Стандарт 802.11 ас работает только в спектре 5GHz. Будет обеспечена обратная совместимость с устройствами 802.11n (в 5GHz) и 802.11а. При этом ожидается существенное увеличение не только полосы пропускания, но и покрытия.

Важным нововведением является технология MU-MIMO (Multiple User). Это фактически пространственный радиокоммутатор, позволяющий одновременно передавать и принимать данные от множества пользователей по одному частотному каналу.

В части услуг 802.11ac, с одной стороны, сфокусирован на значительно более полноценную замену проводному доступу на высоких скоростях, чем 802.11n. С другой стороны, естественно, есть цель и в эффективной поддержке мультимедийных услуг вокруг потокового видео высокого разрешения.

Доступность частотных каналов в спектре 5GHz, что существенно варьируется от страны к стране, и в РФ составляет, например, всего 100MHz (5150-5250MHz). Поэтому пока наш регулятор глубоко не задумается о необходимости высвобождении части спектра 5GHz под задачи Wi-Fi, как сделано во многих странах, такая привлекательная технология будет оставаться красивой сказкой в наших реалиях.

802.11 ad Cтандарт будет работать в спектре 60GHz, который не лицензируется в большинстве стран. Здесь доступно значительно больше свободной полосы, чем в перегруженном 2.4GHz и уже загружаемом спектре 5GHz.

В части услуг данный стандарт сфокусирован на поддержке видео высокого разрешения (HD). Также здесь ожидается возникновение услуг типа «wireless docking», когда все устройства компьютер, монитор, проектор и т.д. имеют беспроводный обмен данными. Используемая сверхвысокая частота приводит к тому, что сигналы довольно узконаправленные. Также возникает много проблем из-за интенсивного поглощения сигналов при прохождении сквозь препятствия, поэтому основной ожидаемый сценарий использования - это взаимодействие устройств в пределах комнаты.

Ожидается, что 802.11ad должен быть совместим со стандартом WiGig.

Региональные и городские сети

Технологии, объединенные под торговой маркой WiMAX, направлены на реализацию широкополосного беспроводного доступа на значительных расстояниях. Коммерческим продвижением технологии занимается организация WiMAX Forum.

Согласно спецификации стандарта 802.16, максимальное расстояние, на котором возможно взаимодействие по сетям WiMAX, составляет 50 км, а суммарная пропускная способность - 70 Мбит/с.

В условиях реальной эксплуатации эти показатели гораздо скромнее и составляют около 8 км и 2 Мбит/с. Такие характеристики делают протокол WiMAX очень привлекательным для замены традиционных технологий по предоставлению «последней мили» при доступе к сети Internet и телефонии. Провайдеры разветвленной городской беспроводной сети могут предоставлять «выделенные» беспроводные каналы для организации виртуальных частных сетей между офисами компаний. Преимущества очевидны: большая, чем при использовании технологии SL, пропускная способность, отсутствие необходимости прокладки кабелей.

В ближайшее время намечается широкое внедрение устройств стандарта 802.16е. Это мобильный вариант протокола WiMAX, рассчитанный на использование в качестве конечных терминалов таких устройств, как компьютеры, КПК, мобильные телефоны и т.д.

Разработанный при содействии правительства стандарт WiBRO выполняет те же функции, что и стандарт 802.16е, и совместим с ним. В первоначальном варианте протокола WiMAX, описанного в стандарте 802.16с использовались частоты в диапазоне 10…66 ГГц. Этому диапазону присущи некоторые ограничения, связанные с лицензированием. Кроме того, его нельзя применять в условиях наличия препятствий между приемником и передатчиком.

Стандарт 802.16а, описывающий использование диапазона 2… 11 ГГц вышел в 2004 г. Поскольку логика работы WiMAX предполагает применение схемы точка-многоточка с фиксированной пропускной способностью канала для каждого из абонентов, на канальном уровне используется механизм множественного доступа к несущей с разделением по времени (Time Division Multiple Access, TDMA). Этот метод широко используется в сотовых сетях (например, GSM) и позволяет реализовать гарантированное качество обслуживания.

Стандарт 802.16 предполагает шифрование трафика с использованием алгоритма DES. Мобильный вариант WiMAC (802.16е) расширяет возможности по защите информации, добавляя аутентификацию станций по протоколу ЕАР, управление ключами с использованием протокола Privacy and Key Management Protocol Version 2 (PKMv2) и шифрование AES. При использовании стандарта 802.16 для передачи корпоративных данных рекомендуется усилить встроенные механизмы защиты с помощью технологий построения виртуальных частных сетей.

При проектировании и развертывании сетей нужно помнить о том, что частотный диапазон выделенный для Wi-Fi весьма тесен, поэтому нужно стараться не использовать антенн с коэффициентом усиления больше чем необходимо, а также принять меры для недопущения помех соседними сетям.

Беспроводные компьютерные сети - это технология, позволяющая создавать вычислительные сети , полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона

В настоящее время устройства для беспроводной сети выпускаются на основе нескольких стандартов, некоторые параметры которых приведены в таблице 1.

Таблица 1 – Некоторые параметры стандартов беспроводной сети

Параметр

Стандарт

802.11а

802.11b

802.11g

Диапазон частот, ГГц

Число каналов

Максимальная скорость, Мбит/сек

54 (108 с аппаратным сжатием)

Совместимость

802.11.g

802.11.b

Существует два основных направления применения беспроводных компьютерных сетей:

Работа в замкнутом объеме (офис, выставочный зал и т. п.);

Соединение удаленных локальных сетей (или удаленных сегментов локальной сети).

Для организации беспроводной сети в замкнутом пространстве применяются передатчики со всенаправленными антеннами. Стандарт IEEE 802.11 определяет два режима работы сети - Ad-hoc и клиент-сервер. Режим Ad-hoc (иначе называемый «точка-точка«) - это простая сеть, в которой связь между станциями (клиентами) устанавливается напрямую, без использования специальной точки доступа. В режиме клиент-сервер беспроводная сеть состоит, как минимум, из одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных клиентских станций. Поскольку в большинстве сетей необходимо обеспечить доступ к файловым серверам, принтерам и другим устройствам, подключенным к проводной локальной сети, чаще всего используется режим клиент-сервер. Без подключения дополнительной антенны устойчивая связь для оборудования IEEE 802.11b достигается в среднем на следующих расстояниях: открытое пространство - 500 м, комната, разделенная перегородками из неметаллического материала - 100 м, офис из нескольких комнат - 30 м. Следует иметь в виду, что через стены с большим содержанием металлической арматуры (в железобетонных зданиях таковыми являются несущие стены) радиоволны диапазона 2,4 ГГц иногда могут вообще не проходить, поэтому в комнатах, разделенных подобной стеной, придется ставить свои точки доступа.

Для соединения удаленных локальных сетей (или удаленных сегментов локальной сети) используется оборудование с направленными антеннами, что позволяет увеличить дальность связи до 20 км (а при использовании специальных усилителей и большой высоте размещения антенн - до 50 км). Причем в качестве подобного оборудования могут выступать и устройства Wi-Fi, нужно лишь добавить к ним специальные антенны (конечно, если это допускается конструкцией). Комплексы для объединения локальных сетей по топологии делятся на «точку-точку» и «звезду«. При топологии «точка-точка» (режим Ad-hoc в IEEE 802.11) организуется радиомост между двумя удаленными сегментами сети. При топологии «звезда» одна из станций является центральной и взаимодействует с другими удаленными станциями. При этом центральная станция имеет всенаправленную антенну, а другие удаленные станции - однонаправленные антенны. Применение всенаправленной антенны в центральной станции ограничивает дальность связи дистанцией примерно 7 км. Поэтому, если требуется соединить между собой сегменты локальной сети, удаленные друг от друга на расстояние более 7 км, приходится соединять их по принципу «точка-точка». При этом организуется беспроводная сеть с кольцевой или иной, более сложной топологией.

Мощность, излучаемая передатчиком точки доступа или же клиентской станции, работающей по стандарту IEEE 802.11, не превышает 0,1 Вт, но многие производители беспроводных точек доступа ограничивают мощность лишь программным путем, и достаточно просто поднять мощность до 0,2-0,5 Вт. Для сравнения - мощность, излучаемая мобильным телефоном, на порядок больше(в момент звонка — до 2 Вт). Поскольку, в отличие от мобильного телефона, элементы сети расположены далеко от головы, в целом можно считать, что беспроводные компьютерные сети более безопасны с точки зрения здоровья, чем мобильные телефоны.

Если беспроводная сеть используется для объединения сегментов локальной сети, удаленных на большие расстояния, антенны, как правило, размещаются за пределами помещения и на большой высоте

На практике лучше выбрать один стандарт беспроводного оборудования, а при необходимости использования совместимых режимов- проверять наличие сертификации соответствующего решения.

Беспроводная связь, или связь по радиоканалу, сегодня используется и для построения магистралей (радиорелейные линии), и для создания локальных сетей, и для подключения удаленных абонентов к сетям и магистралям разного типа. Весьма динамично развивается в последние годы стандарт беспроводной связи Radio Ethernet. Изначально он предназначался для построения локальных беспроводных сетей, но сегодня все активнее используется для подключения удаленных абонентов к магистралям. С его помощью решается проблема «последней мили» (правда, в отдельных случаях эта «миля» может составлять от 100 м до 25 км). Radio Ethernet сейчас обеспечивает пропускную способность до 54 Мбит/с и позволяет создавать защищенные беспроводные каналы для передачи мультимедийной информации.

Данная технология соответствует стандарту 802.11, разработанному Международным институтом инженеров по электротехнике и радиоэлектронике (IEEE) в 1997 году и описывающему протоколы, которые позволяют организовать локальные беспроводные сети (Wireless Local Area Network, WLAN).

Один из главных конкурентов 802.11 - стандарт HiperLAN2 (High Performance Radio LAN), разрабатываемый при поддержке компаний Nokia и Ericsson. Следует заметить, что разработка HiperLAN2 ведется с учетом обеспечения совместимости данного оборудования с системами, построенными на базе 802.11а. И этот факт наглядно демонстрирует популярность средств беспроводного доступа на основе Radio Ethernet, растущую по мере увеличения числа пользователей ноутбуков и прочих портативных вычислительных средств

2.Проектирование беспроводной сети предприятия

С помощью беспроводных технологий можно соединять компьютеры (по принципу «точка - точка»), отдельные сегменты сетей и т. п. Наиболее часто в локальных сетях устройства беспроводного доступа ставятся в качестве точки доступа (Wireless Access Point, АР). В этом случае персональные компьютеры подключаются к точкам доступа, через которые осуществляют доступ как в локальную сеть организации, так и в Интернет, при этом точка доступа выступает аналогом концентратора локальной сети.
После выбора стандарта беспроводной сети следует определить зоны покрытия. Одно стандартное устройство АР «покрывает» в помещении зону радиусом около 75-100 м. Хотя существуют различные оценки для расчетов диаграмм зон покрытия, эти величины существенно зависят от конкретных условий: планировки помещений, материала стен и т. п. Лучшим способом является проведение тестовых измерений на местности с использованием соответствующего оборудования. Как правило, это весьма дорогостоящая операция, поэтому часто ограничиваются тестированием уровня сигнала встроенными средствами беспроводного адаптера (штатными средствами Windows). При этом следует учесть, что существующее на предприятии оборудование при своей работе может создать помехи беспроводной сети, и предусмотреть необходимые технологические резервы. И даже при отсутствии постоянных помех используемые в беспроводной сети программы должны быть устойчивы к кратковременному исчезновению связи.

На количество устанавливаемых точек доступа будут влиять также требования к скорости передачи данных. Указанные в таблице 1 значения скорости передачи данных являются максимальными, а полоса пропускания делится между всеми устройствами, которые подключены к данному каналу. Также следует учитывать, что скорость передачи данных снижается на максимальных расстояниях при слабом уровне сигнала.

Установка дополнительных точек доступа позволит распределить между ними пользователей и повысить скорость обмена данными. Поскольку правильное расположение точек доступа требует учета многих факторов, на практике беспроводные сети часто проектируются на основе анализа замеров параметров радиочастотного сигнала в реальных условиях.

Если нужно спроектировать связь между двумя зданиями, то следует использовать специализированные беспроводные мосты и, возможно, направленные антенны.

Если режим работы системы предполагает мобильность устройств (перемещение их во время работы с системой с переключением между различными точками доступа), то такое решение требует использования специального программного обеспечения.

3. Безопасность беспроводной сети и аутентификация пользователей и устройств Wi-Fi

Точку доступа можно сравнить с концентратором локальной сети, который поставлен в общедоступное помещение. Любой может «подключиться» к данному сегменту и прослушивать передаваемую информацию. Поэтому правильной настройке подключения клиентов необходимо уделить особое внимание.

Для защиты передаваемой по беспроводной сети информации все данные шифруются. Исторически первый стандарт безопасности для Wi-Fi- WEP (Wired Equivalent Privacy)- предусматривает шифрование с помощью статичного ключа, известного как пользователю, так и администратору точки доступа. К сожалению, в практической реализации этого документа были найдены ошибки, которые позволяют за короткое время (порядка нескольких часов) вычислить данный ключ. Поэтому протоколы WEP, даже с увеличенной длиной ключа, не могут считаться безопасными при создании корпоративной беспроводной сети.

Если примененные при создании беспроводной сети устройства не поддерживают новых протоколов безопасности, то администраторы могут защитить передаваемую информацию путем создания виртуальных частных сетей (VPN).

Новый стандарт безопасности WPA (Wi-Fi Protected Access) предусматривает как использование динамических (изменяемых) ключей шифрования, так и аутентификацию пользователя при входе в беспроводную сеть. Проектируя беспроводной сегмент сети, следует приобретать только устройства, удовлетворяющие данному стандарту.

В беспроводных сетях применяются два способа проверки пользователей и устройств при их подключении. Первый- это проверка МАС-адресов устройств, подключаемых к данной точке доступа. В этом случае администратор вручную должен настроить для каждой точки доступа соответствующий список МАС-адресов устройств, которым разрешено беспроводное подключение.

Способ не может считаться безопасным, поскольку МАС-адреса легко определяются при прослушивании беспроводного сегмента, а «подмена» МАС-адреса не представляет никакой сложности даже для не совсем опытного пользователя.

Второй способ основан на протоколе двухточечного соединения с надежной аутентификацией- ЕАР (Extensible Authentication Protocol). Для предприятий следует рекомендовать аутентификацию на основе стандарта 802.1х с использованием сервера RADIUS.

Наиболее безопасен способ, при котором для аутентификации вместо паролей используются сертификаты. Однако он требует наличия на предприятии настроенной системы PKI .


Рисунок 1 – Создание политики RADIUS-сервера для беспроводной сети. При создании политики удаленного доступа для сервера RADIUS должен быть выбран шаблон «Беспроводной доступ»

При такой настройке клиенты, ранее не работавшие в составе домена, не могут быть подключены к нему по беспроводной сети, поскольку на них не установлены необходимые сертификаты. Вам следует либо заранее осуществить подсоединение компьютера к домену с помощью проводной сети, либо настроить особую политику для временного подключения гостевых записей (введя в этом случае временные ограничения сессии в политике подключения сервера RADIUS). При краткосрочном подключении к сети клиент получит сертификат и в дальнейшем будет работать в соответствии с постоянной политикой беспроводного доступа.


Рисунок 2 – Включение брандмауэра Windows

При подключении компьютера к публичной беспроводной сети следует принимать те же меры безопасности, что и при работе в Интернете. Прежде всего следует обязательно защитить подключение брандмауэром (например, встроенный брандмауэр Windows XP - опция Защитить подключение к Интернету в свойствах беспроводного подключения). Этим вы блокируете доступ к данным, хранимым на локальном компьютере, из внешней сети.
Включение этой опции обеспечивает защиту системы Windows XP с первым сервис-паком. На компьютерах с Windows XP при установленном втором сервис-паке необходимо в обязательном порядке запретить допущенные разработчиком по умолчанию разрешения доступа к компьютеру извне (осуществляется через настройку брандмауэра отключением исключений).

Список использованных источников

    Богданов. А.Ю. Информационные технологии в экономике. – М.: Эксмо, 2006.

    Вентцель. Е.С. Информационные системы в экономике. – М.: Финансы и статистика, 2008.

    Волков А.К. Информационные технологии. – М.: Инфра, 2006. –

овременные технологии беспроводной передачи данных активно внедряются и широко используются как в производственной деятельности большинства компаний, так и для построения компьютерных сетей для домашнего использования. Новые аппаратные решения в области беспроводной передачи данных позволяют создавать и беспроводные компьютерные сети в пределах одного здания, и распределенные сети в масштабах целого города. Пользователь беспроводной сети, у которого есть ноутбук или КПК, оснащенный встроенным модулем беспроводной связи, сегодня уже не привязан к проводной локальной вычислительной сети, а может свободно ходить по комнатам либо перемещаться в соседнее здание, оставаясь при этом постоянно подключенным к сети. Поддержка роуминга позволяет пользователям поддерживать постоянное подключение к сети, находясь в пределах зоны покрытия беспроводной сети. Корпоративные сотрудники, которые по служебной необходимости совершают регулярные деловые поездки, рассматривают беспроводные технологии как необходимую составляющую бизнеса. Беспроводные компьютерные сети активно развертываются в таких общественных местах, как гостиницы, транспортные терминалы, рестораны, кафе, предоставляя посетителям доступ к Интернету. По оценкам специалистов, интенсивное развитие и широкая популярность технологий беспроводной передачи данных за последние несколько лет были обусловлены именно этой возможностью.

Беспроводные компьютерные сети могут быть установлены для временного использования в помещениях, в которых проводная ЛВС отсутствует или затруднена прокладка сетевых кабелей. Установка и конфигурация беспроводных сетей осуществляются очень просто. Беспроводная сеть строится на основе базовых станций (Access Point — точек доступа). Точка доступа — это своеобразный мост, который предоставляет беспроводной доступ станциям, оборудованным беспроводными сетевыми картами, между собой и к компьютерам, объединенным в сеть посредством проводов. Радиус зоны покрытия одной точки доступа составляет около 100 м. При этом одна точка одновременно может поддерживать несколько десятков активных пользователей и обеспечивает скорость передачи информации для конечного абонента до 11 Мбит/с. С помощью точек доступа беспроводные рабочие станции, ноутбуки, карманные устройства, оснащенные модулями беспроводной связи, объединяются в беспроводную компьютерную сеть, производительность которой зависит от количества одновременно работающих пользователей. В целях повышения производительности беспроводной сети устанавливаются дополнительные точки доступа. Путем настройки точек доступа беспроводной сети на различные радиоканалы можно добиться оптимального распределения сетевого трафика сети.

Совместимость беспроводной компьютерной сети с проводной инфраструктурой вообще не является проблемой, поскольку большинство систем беспроводного доступа соответствует отраслевым стандартам соединения с сетями Ethernet. Узлы беспроводной сети поддерживаются сетевыми операционными системами (как и любые другие сетевые узлы) с помощью драйверов сетевых устройств. Совместимость же разных систем беспроводных сетей действительно представляет собой сложную проблему, поскольку существует множество разных технологий и производителей. Кроме того, следует учитывать и вопросы совместимости устройств, использующих одну и ту же частоту.

Низкая стоимость, быстрое развертывание, широкие функциональные возможности по передаче трафика данных, IP-телефонии, видео — все это делает беспроводную технологию одним из самых перспективных телекоммуникационных направлений.

Основные стандарты беспроводных сетей

Cтандарт IEEE 802.11

«Патриархом» семейства стандартов беспроводных сетей является стандарт IEEE 802.11, разработка которого была начата в 1990-м, а закончена в 1997 году. Этот стандарт обеспечивает передачу данных на частоте 2,4 ГГц со скоростью до 2 Мбит/с. Передача данных осуществляется либо методом прямой последовательности (Direct Sequence Spread Spectrum, DSSS), либо методом изменения спектра скачкообразной перестройкой частоты (Frequency Hopping Spread Spectrum, FHSS). Технология DSSS основана на создании избыточного набора битов (чипа) на каждый переданный бит. Чип однозначно идентифицирует данные, поступившие от конкретного передатчика, который генерирует набор битов, а данные может расшифровать только приемник, которому известен этот набор битов. Технология FHSS использует узкополосную несущую частоту, скачкообразно меняющуюся в такой последовательности, которая известна только передатчику и приемнику. При правильной синхронизации передатчик и приемник поддерживают единый логический канал связи, любому же другому приемнику передача по протоколу FHSS представляется кратковременными импульсными шумами. С использованием технологии DSSS в диапазоне 2,4 ГГц могут одновременно работать (без перекрытия) три станции, а технология FHSS увеличивает число таких станций до 26. Дальность приема/передачи с использованием DSSS выше, чем у FHSS, за счет более широкого спектра несущей. Если уровень шума превышает некоторый определенный уровень, DSSS-станции перестают работать вообще, в то время как FHSS-станции имеют проблемы только на отдельных частотных скачках, но эти проблемы легко разрешаемы, вследствие чего станции FHSS считаются более помехозащищенными. Системы, в которых для защиты данных применяется FHSS, неэффективно используют полосу пропускания, поэтому скорость передачи данных здесь, как правило, ниже, чем в системах с технологией DSSS. Устройства беспроводных сетей с относительно низкой производительностью (1 Мбит/с) используют технологию FHSS.

Стандарт IEEE 802.11 получил свое дальнейшее развитие в виде спецификаций, в наименованиях которых присутствуют буквенные обозначения рабочей группы, разработавшей данную спецификацию.

Cтандарт IEEE 802.11a

Спецификация 802.11а использует диапазон частот 5,5 ГГц, что позволяет достичь пропускной способности канала 54 Мбит/с. Увеличение пропускной способности стало возможным благодаря применению технологии ортогонального частотного мультиплексирования OFDM (Orthogonal Frequency Division Multiplexing), которая была специально разработана для борьбы с помехами при многолучевом приеме. Технология OFDM предусматривает преобразование последовательного цифрового потока в большое число параллельных подпотоков, каждый из которых передается на отдельной несущей частоте.

Cтандарт IEEE 802.11b

Спецификация 802.11b является описанием технологии беспроводной передачи данных, получившей название Wi-Fi (Wireless Fidelity). Стандарт обеспечивает передачу данных со скоростью 11 Мбит/с на частоте 2,4 ГГц. Для передачи сигнала используется технология DSSS, при которой весь диапазон делится на пять перекрывающих друг друга поддиапазонов, по каждому из которых передается информация. Значения каждого бита кодируются последовательностью дополнительных кодов (Complementary Code Keying).

Cтандарт IEEE 802.11g

Спецификацию 802.11g можно представить как объединение стандартов 802.11a и 802.11b. Этот стандарт обеспечивает скорость передачи данных до 54 Мбит/с при использовании диапазона 2,4 ГГц. Аналогично стандарту 802.11a эта спецификация использует технологию OFDM, а также кодирование с помощью Complementary Code Keying, что обеспечивает взаимную совместимость работы с устройствами стандарта 802.11b.

Технологии и методы защиты данных в сетях Wi-Fi

дной из важных задач администрирования компьютерной сети является обеспечение безопасности. В отличие от проводных сетей, в беспроводной сети данные между узлами передаются «по воздуху», поэтому возможность проникновения в такую сеть не требует физического подключения нарушителя. По этой причине обеспечение безопасности информации в беспроводной сети является основным условием дальнейшего развития и применения технологии беспроводной передачи данных в коммерческих предприятиях. Согласно результатам опроса главных менеджеров по безопасности IT-компаний, проведенного фирмой Defcom, примерно 90% опрошенных уверены в перспективах беспроводных сетей, но отодвигают их внедрение на неопределенный срок ввиду слабой защищенности таких сетей на современном этапе; более 60% считают, что недостаточная безопасность серьезно тормозит развитие этого направления. А раз нет доверия, соответственно многие компании не рискуют отказываться от испытанных временем проводных решений.

Протокол безопасности WEP

Первой технологией защиты беспроводных сетей принято считать протокол безопасности WEP (Wired Equivalent Privacy — эквивалент проводной безопасности), изначально заложенный в спецификациях стандарта 802.11. Указанная технология позволяла шифровать поток передаваемых данных между точкой доступа и персональным компьютером в рамках локальной сети. Шифрование данных осуществлялось с использованием алгоритма RC4 на ключе со статической составляющей от 40 до 104 бит и с дополнительной случайной динамической составляющей (вектором инициализации) размером 24 бит; в результате шифрование данных производилось на ключе размером от 64 до 128 бит. В 2001 году были найдены способы, позволяющие путем анализа данных, передаваемых по сети, определить ключ. Перехватывая и анализируя сетевой трафик активно работающей сети, такие программы, как AirSnort, WEPcrack либо WEPAttack, позволяли вскрывать 40-битный ключ в течение часа, а 128-битный ключ — примерно за четыре часа. Полученный ключ позволял нарушителю входить в сеть под видом легального пользователя.

В ходе тестирования различного сетевого оборудования, работающего по стандарту 802.11, была обнаружена ошибка в процедуре предотвращения коллизий, возникающих при одновременной работе большого числа устройств беспроводной сети. В случае атаки устройства сети вели себя так, будто канал был все время занят. Передача любого трафика сети полностью блокировалась, и за пять секунд сеть полностью выходила из строя. Эту проблему невозможно было решить ни с помощью специализированного программного обеспечения, ни с использованием механизмов шифрования, так как данная ошибка была заложена в самой спецификации стандарта 802.11.

Подобной уязвимости подвержены все устройства беспроводной передачи данных, работающие на скоростях до 2 Мбит/с и использующие технологию DSSS (Direct Sequence Spread Spectrum). Сетевые устройства стандартов 802.11a и 802.11g, работающие на скоростях более 20 Мбит/с, данной уязвимости не подвержены.

Таким образом, технология WEP не обеспечивает надлежащего уровня безопасности корпоративной сети предприятия, но ее вполне достаточно для домашней беспроводной сети, когда объем перехваченного сетевого трафика слишком мал для анализа и вскрытия ключа.

Cтандарт IEEE 802.11X

Очередным шагом в развитии методов защиты беспроводных сетей было появление стандарта IEEE 802.11X, совместимого с IEEE 802.11. В новом стандарте были использованы протокол расширенной аутентификации Extensible Authentication Protocol (EAP), протокол защиты транспортного уровня Transport Layer Security (TLS) и сервер доступа RADIUS (Remote Access Dial-in User Server). В отличие от протокола WEP, стандарт IEEE 802.11X использует динамические 128-битные ключи, периодически меняющиеся во времени. Секретный ключ пересылается пользователю в зашифрованном виде после прохождения этапа аутентификации. Время действия ключа ограничено временем действующего на данный момент сеанса. После окончания текущего сеанса создается новый секретный ключ и снова высылается пользователю. Взаимная аутентификация и целостность передачи данных реализуется протоколом защиты транспортного уровня TLS. Для шифрования данных, как и в протоколе WEP, используется алгоритм RC4 с некоторыми изменениями.

В указанном стандарте были исправлены недостатки технологий безопасности, применяемых в 802.11, — это возможность взлома WEP и зависимость от технологий производителя. IEEE 802.11X поддерживается операционными системами Windows XP и Windows Server 2003. По умолчанию в Windows XP время сеанса работы на секретном ключе равно 30 минутам.

Стандарт безопасности WPA

В 2003 году был представлен следующий стандарт безопасности — WPA (Wi-Fi Protected Access), главной особенностью которого стали динамическая генерация ключей шифрования данных, построенная на базе протокола TKIP (Temporal Key Integrity Protocol) и позволяющая обеспечить конфиденциальность и целостность передаваемых данных. По протоколу TKIP сетевые устройства работают с 48-битовым вектором инициализации (в отличие от 24-битового вектора WEP) и реализуют правила изменения последовательности его битов, что исключает повторное использование ключей. В протоколе TKIP предусмотрена генерация нового 128-битного ключа для каждого передаваемого пакета и улучшенный контроль целостности сообщений с помощью криптографической контрольной суммы MIC (Message Integrity Code), препятствующей нарушителю изменять содержимое передаваемых пакетов. В итоге получается, что каждый передаваемый по сети пакет данных имеет собственный уникальный ключ, а каждое устройство беспроводной сети наделяется динамически изменяемым ключом. Хотя протокол TKIP работает с тем же блочным шифром RC4, который предусмотрен спецификацией протокола WEP, однако технология WPA защищает данные надежнее последнего. Ключи динамически меняются каждые 10 Кбайт. По заверениям разработчиков данного стандарта, вероятность получения одинаковых ключей очень мала.

В общем виде структуру защищенной технологии WPA можно представить как объединение стандарта безопасности IEEE 802.11X, протокола расширенной аутентификации EAP, протокола интеграции временного ключа TKIP, технологии проверки целостности сообщений MIC и централизованного сервера аутентификации RADIUS, предназначенного для работы с точками доступа беспроводной сети. Наличие аутентификации пользователей беспроводной сети также является характерной особенностью стандарта безопасности WPA. Точки доступа беспроводной сети для работы в системе сетевой безопасности стандарта WPA должны поддерживать аутентификацию пользователей по протоколу RADIUS. Сервер RADIUS сначала проверяет аутентифицирующую информацию пользователя (на соответствие содержимому своей базы данных об идентификаторах и паролях пользователей) или его цифровой сертификат, а затем активизирует динамическую генерацию ключей шифрования точкой доступа и клиентской системой для каждого сеанса связи. Для работы технологии WPA требуется механизм EAP-TLS (Transport Layer Security).

Централизованный сервер аутентификации наиболее целесообразно использовать в масштабах крупного предприятия. Для шифрования пакетов и расчета криптографической контрольной суммы MIC используется значение пароля.

Необходимым условием использования стандарта безопасности WPA в рамках конкретной беспроводной сети является поддержка данного стандарта всеми устройствами сети. Если функция поддержки стандарта WPA выключена либо отсутствует хотя бы у одного из устройств, то безопасность сети будет реализована по умолчанию на базе протокола WEP. Проверить устройства беспроводной сети на совместимость можно по спискам сертифицированных продуктов, представленных на Web-сайте организации Wi-Fi Alliance (http://www.wi-fi.org).

WPA изначально разрабатывался как временный стандарт, поэтому широкое распространение получила как его аппаратная, так и программная реализация. Например, установка обновления Service Pack SP1 операционной системы Windows XP на ноутбуках Intel Centrino дает возможность использовать стандарт WPA. В силу того что большинство программных реализаций стандарта WPA генерируют секретный ключ, используя пароль пользователя и сетевое имя компьютера, то знание этого пароля позволяет нарушителям беспрепятственно проникнуть в беспроводную сеть. Пароль является основой для получения ключа шифрования, и поэтому разумный подход к его выбору имеет решающее значение для безопасности всей сети. Нарушитель, несколько раз понаблюдав процедуру обмена ключами с точкой доступа, может осуществить анализ трафика на предмет получения пароля. Считается, что пароли длиной менее 20 знаков значительно снижают безопасность беспроводной сети.

Беспроводные виртуальные частные сети

Технология виртуальных частных сетей VPN (Virtual Private Network) получила широкое распространение для обеспечения конфиденциальности передаваемых данных по беспроводным сетям. Прежде технология VPN в основном использовалась для безопасной передачи данных между распределенными подразделениями компаний по проводным сетям общего пользования. Создаваемая между узлами сети виртуальная частная сеть, используя протокол IPSec (Internet Protocol Security), который состоит из набора правил, разработанных для определения методов идентификации при инициализации виртуального соединения, позволяет обеспечить безопасный обмен пакетами данных по Интернету. Пакеты данных шифруются посредством алгоритмов DES, AES и др. Технология VPN обладает высокой степенью надежности. Создание беспроводной виртуальной частной сети предполагает установку шлюза непосредственно перед точкой доступа и установку VPN-клиентов на рабочих станциях пользователей сети. Путем администрирования виртуальной частной сети осуществляется настройка виртуального закрытого соединения (виртуального туннеля) между шлюзом и каждым VPN-клиентом сети. Главным недостатком использования беспроводной виртуальной частной сети является значительное сокращение пропускной способности.

Стандарт IEEE 802.11i

В середине прошлого года спецификация защиты сетей Wi-Fi получила окончательное одобрение комитета по стандартам IEEE и была представлена в виде стандарта IEEE 802.11i, получившего название WPA2. В основе этого стандарта лежит концепция надежно защищенной сети — Robust Security Network (RSN), в соответствии с которой точки доступа и сетевые устройства должны обладать отличными техническими характеристиками, высокой производительностью и поддержкой сложных алгоритмов шифрования данных. Технология IEEE 802.11i является дальнейшим развитием стандарта WPA, поэтому в этих стандартах реализовано много аналогичных решений, например архитектура системы безопасности по аутентификации и обновлению ключевой информации сети. Однако указанные стандарты существенно отличаются друг от друга. В WPA процедура шифрования данных построена на базе протокола TKIP, а технология IEEE 802.11i основана на алгоритме AES (Advanced Encryption Standard), обеспечивающем более надежную защиту и поддерживающем ключи длиной 128, 192 и 256 бит. В технологии IEEE 802.11i алгоритм AES выполняет ту же функцию, что и алгоритм RC4 в протоколе TKIP стандарта WPA. Защитный протокол, использующий AES, получил название CCMP (Counter Mode with CBC-MAC Protocol). Для подсчета криптографической контрольной суммы MIC протокол CCMP применяет метод CBC-MAC (Cipher Block Chaining Message Authentication Code).

Следует отметить, что новая технология IEEE 802.11i тоже не является окончательным решением проблемы безопасности сетей Wi-Fi, поскольку пользователям беспроводных сетей потребуется более гибкая система управления безопасностью сети.

Возможные виды атак на беспроводные сети

Разрабатываемые в настоящее время системы безопасности требуют правильного администрирования. Мэтт Хайнс, представитель компании CNET, приводит следующую статистику по США: к 2007 году 80% беспроводных локальных сетей, расположенных на территории стран США, можно будет отнести к незащищенным; в 2006 году 70% удачных атак на беспроводные сети будет проведено исключительно благодаря настройкам, оставленным по умолчанию.

Первые действия, предпринимаемые нарушителем для проникновения в беспроводную сеть, — это поиск точки доступа с отключенными режимами безопасности. Можно также получить доступ к ресурсам беспроводной сети, если узнать идентификатор сети SSID (Service Set IDentifier), который используется в беспроводных сетях стандарта 802.11 (Wi-Fi). Данный идентификатор является секретным ключом, устанавливаемым администратором сети, но его значение можно получить посредством сканирования трафика сети соответствующим программным обеспечением (например, с помощью программы NetStumbler). По умолчанию идентификатор SSID является составной частью заголовка каждого пакета, пересылаемого по сети. Поэтому некоторые производители сетевого оборудования ввели дополнительную опцию настройки, позволяющую отключать широковещательную рассылку SSID. Кроме идентификатора SSID, специализированное программное обеспечение позволяет нарушителю узнать множество других параметров системы безопасности сети.

В качестве одной из мер противодействия несанкционированному доступу к сети можно посоветовать назначение списка МАС-адресов пользователей сети. В то же время значение МАС-адреса не шифруется, поэтому сканирование трафика сети позволяет решить такую задачу.

Для несанкционированного определения идентификационных данных пользователей (имени и пароля) беспроводной сети злоумышленники иногда практикуют создание фальшивого узла доступа, получившего название evil twin (дьявольский близнец). В непосредственной близости от атакуемой беспроводной сети нарушитель устанавливает базовую станцию с более мощным сигналом, замаскированную под легальную базовую станцию беспроводной сети. А когда пользователи атакуемой сети начнут регистрироваться на таких серверах, то раскроют свою идентификационную информацию.

Предотвращение угроз безопасности беспроводных сетей

По результатам анализа возможных угроз безопасности беспроводных сетей специалисты предлагают некоторые правила по организации и настройке беспроводных сетей:

  • при создании беспроводных сетей необходимо проверить совместимость используемого сетевого оборудования (данную информацию можно получить на Web-сайте организации Wi-Fi Alliance: http://www.wi-fi.org);
  • правильное размещение антенн и уменьшение зоны действия беспроводной сети путем ограничения мощности передачи антенны позволяет снизить вероятность несанкционированного подключения к беспроводной сети;
  • в настройках сетевого оборудования следует отключить широковещательную рассылку идентификатора SSID. Необходимо запретить доступ пользователей, имеющих значение идентификатора SSID «Аny»;
  • для настройки точки доступа желательно использовать проводное соединение, отключив по возможности беспроводной доступ к настройкам параметров. Пароль для доступа к настройкам точки доступа должен быть сложным;
  • следует периодически проводить аудит безопасности беспроводной сети, устанавливать обновления драйверов и операционных систем;
  • использовать список МАС-адресов легальных пользователей беспроводной сети;
  • одной из основных задач администратора сети является периодическая смена статических паролей;
  • ключи, используемые в сети, должны быть максимально длинными. Постоянная смена ключевой информации повысит защищенность сети от несанкционированного доступа;
  • технология шифрования данных беспроводной сети должна обеспечивать наивысшую степень защиты с учетом ее поддержки всеми сетевыми устройствами беспроводной сети;
  • на всех компьютерах сети желательно установить файерволы и отключить максимально возможное число неиспользуемых сетевых протоколов, чтобы ограничить возможность проникновения нарушителя внутрь сети;
  • администратор сети обязан регулярно проводить административно-организационные мероприятия по недопущению разглашения паролей пользователей и другой ключевой информации.

Заключение

ировые производители сетевого оборудования активно занимаются продвижением новых аппаратных и программных решений для беспроводной передачи данных. В октябре 2004 года компания 3Com анонсировала решение в области беспроводных коммутаторов — Wireless Mobility System, которое позволяет производить предварительное планирование сети, централизованное управление ею, автоматическую диагностику точек доступа, обнаружение и изоляцию посторонних сетевых сегментов, контроль доступа и разделение групп пользователей. Wireless Mobility System обладает высокой мобильностью, быстрым роумингом, а также высокой степенью готовности к передаче критичного к задержкам трафика (VoIP, видео) с использованием механизмов CoS и QoS.

По оценкам специалистов, к концу текущего года в сегменте оборудования для ЛВС около 20% будет принадлежать Wi-Fi-оборудованию. Основные области применения этого стандарта не изменятся; значительный рост произойдет в сфере офисных и домашних сетей. Структура применения технологии Wi-Fi будет выглядеть примерно следующим образом: дом — 10-15%, офис — 60-65%, хот-споты — 30-35%. При разработке новых беспроводных продуктов приоритеты будут отдаваться безопасности, повышению удобства для пользователя в плане настроек и т.д., увеличению пропускной способности.

Решение проблемы безопасности в сетях Wi-Fi сможет реально расширить круг пользователей и поднять их доверие к беспроводным сетям на принципиально новый уровень. Но проблема эта не может быть решена только посредством принятия стандартов и за счет унификации оборудования. Значительные усилия в этом направлении должны приложить поставщики услуг, требуется гибкая система безопасности, необходима настройка политик доступа, большую роль играет и грамотная работа администратора беспроводной сети. Короче говоря, следует принимать все необходимые меры и использовать все возможные способы для обеспечения безопасности.

Стандарт IEEE 802.11. В 1990 г. Комитет IEEE 802 сформировал рабочую группу 802.11 для разработки стандарта для беспроводных локальных сетей. Работы по созданию стандарта были завершены через 7 лет. В 1997 г. была ратифицирована первая спецификация беспроводного стандарта IEEE 802.11, обеспечивающего передачу данных с гарантированной скоростью 1 Мб/с (в некоторых случаях до 2 Мб/с) в полосе частот 2,4 ГГц. Эта полоса частот доступна для нелицензионного использования в большинстве стран мира.

Стандарт IEEE 802.11 является базовым стандартом и определяет протоколы, необходимые для организации беспроводных локальных сетей WLAN (Wireless Local Area Network). Основные из них - протокол управления доступом к среде MAC (Medium Accsess Control - нижний подуровень канального уровня) и протокол PHY передачи сигналов в физической среде. В качестве физической среды допускается использование радиоволн и инфракрасного излучения.

В основу стандарта IEEE 802.11 положена сотовая архитектура, причем сеть может состоять как из одной, так и нескольких ячеек. Каждая из них управляется базовой станцией, называемой точкой доступа АР (Access Point), которая вместе с находящимися в пределах радиуса ее действия рабочими станциями пользователей образует базовую зону обслуживания BSS (Basic Service Set). Точки доступа многосотовой сети взаимодействуют между собой через распределительную систему DS (Distribution System), представляющую собой эквивалент магистрального сегмента кабельных ЛС. Вся инфраструктура, включающая точки доступа и распределительную систему образует расширенную зону обслуживания ESS (Extended Service Set). Стандартом предусмотрен также односотовый вариант беспроводной сети, который может быть реализован и без точки доступа, при этом часть ее функций выполняются непосредственно рабочими станциями.

Для обеспечения перехода мобильных рабочих станций из зоны действия одной точки доступа к другой в многосотовых системах предусмотрены специальные процедуры сканирования (активного и пассивного прослушивания эфира) и присоединения (Association), однако строгих спецификаций по реализации роуминга стандарт IEEE 802.11 не предусматривает.

Для защиты WLAN стандартом IEEE 802.11 предусмотрен алгоритм WEP (Wired Equivalent Privacy). Он включает средства противодействия НСД к сети, а также шифрование для предотвращения перехвата информации.

Однако заложенная в первую спецификацию стандарта IEEE 802.11 скорость передачи данных в беспроводной сети перестала удовлетворять потребностям пользователей: алгоритм WEP имел ряд существенных недостатков - отсутствие управления ключом, использование общего статического ключа, малые разрядности ключа и вектора инициализации, сложности использования алгоритма RC4.

Чтобы сделать технологию Wireless LAN недорогой, популярной и удовлетворяющей жестким требованиям бизнес-приложений, разработчики создали семейство новых спецификаций стандарта IEEE 802.11 - а, Ь, ..., i. Стандарты этого семейства, по сути, являются беспроводными расширениями протокола Ethernet, что обеспечивает хорошее взаимодействие с проводными сетями Ethernet.

Стандарт IEEE 802.11b был ратифицирован IEEE в сентябре 1999 г. как развитие базового стандарта 802.11; в нем используется полоса частот 2,4 ГГц, скорость передачи достигает 11 Мб/с (подобно Ethernet). Благодаря ориентации на освоенный диапазон 2,4 ГГц стандарт 802.1 lb завоевал большую популярность у производителей оборудования. В качестве базовой радиотехнологии в нем используется метод распределенного спектра с прямой последовательностью DSSS (Direct Sequence Spread Spectrum), который отличается высокой устойчивостью к искажению данных помехами, в том числе преднамеренными. Этот стандарт получил широкое распространение, и беспроводные LAN стали привлекательным решением с технической и финансовой точки зрения.

Стандарт IEEE 802.11а предназначен для работы в частотном диапазоне 5 ГГц. Скорость передачи данных до 54 Мбит/с, т. е. примерно в 5 раз быстрее сетей 802.1 lb. Ассоциация WECA называет этот стандарт Wi-Fi5. Это наиболее широкополосный стандарт из семейства стандартов 802.11. Определены три обязательные скорости - 6, 12 и 24 Мбит/с и пять необязательных - 9, 18, 36, 48 и 54 Мбит/с. В качестве метода модуляции сигнала принято ортогональное частотное мультиплексирование OFDM (Orthogonal Frequency Division Multiplexing). Его отличие от метода DSSS заключается в том, что OFDM предполагает параллельную передачу полезного сигнала одновременно по нескольким частотам диапазона, в то время как технологии расширения спектра DSSS передают сигналы последовательно. В результате повышается пропускная способность канала и качество сигнала. К недостаткам стандарта 802.11а относится большая потребляемая мощность радиопередатчиков для частот 5 ГГц, а также меньший радиус действия (около 100 м).

Для простоты запоминания в качестве общего имени для стандартов 802.11b и 802.11а, а также всех последующих, относящихся к беспроводным локальным сетям (WLAN), Ассоциацией беспроводной совместимости с Ethernet WECA (Wireless Ethernet Compatibility Aliance) был введен термин Wi-Fi (Wireless Fidelity). Если устройство помечено этим знаком, оно протестировано на совместимость с другими устройствами 802.11.

Стандарт IEEE 802.11g представляет собой развитие 802.11b и обратно совместим с 802.11b; предназначен для обеспечения скоростей передачи данных до 54 Мбит/с. В числе достоинств 802.1 lg надо отметить низкую потребляемую мощность, большие расстояния (до 300 м) и высокую проникающую способность сигнала.

Стандарт IEEE 802. lli - стандарт обеспечения безопасности в беспроводных сетях; ратифицирован IEEE в 2004 г. Этот стандарт решил существовавшие проблемы в области аутентификации и протокола шифрования, обеспечив значительно более высокий уровень безопасности. Стандарт 802.1 И может применяться в сетях Wi-Fi, независимо от используемого стандарта - 802.1 la, b или g.

Существуют два очень похожих стандарта - WPA и 802.11 i. WPA был разработан в Wi-Fi Alliance как решение, которое можно применить немедленно, не дожидаясь завершения длительной процедуры ратификации 802.1 П в IEEE. Оба стандарта используют механизм 802.1 х (см. далее) для обеспечения надежной аутентификации, оба используют сильные алгоритмы шифрования и предназначены для замены протокола WEP.

Их основное отличие заключается в использовании различных механизмов шифрования. В WPA применяется протокол TKIP (Temporal Key Integrity Protocol), который, также как и WEP, использует шифр RC4, но значительно более безопасным способом. Обеспечение конфиденциальности данных в стандарте IEEE 802.1 li основано на использовании алгоритма шифрования AES (Advanced Encryption Standard). Использующий его защитный протокол получил название ССМР (Counter-Mode СВС MAC Protocol). Алгоритм AES обладает высокой криптостойкостью. Длина ключа AES равна 128, 192 или 256 бит, что обеспечивает наиболее надежное шифрование из доступных сейчас.

Стандарт 802.1 И предполагает наличие трех участников процесса аутентификации. Это сервер аутентификации AS (Authentication Server), точка доступа АР (Access Point) и рабочая станция STA (Station). В процессе шифрования данных участвуют только АР и STA (AS не используется). Стандарт предусматривает двустороннюю аутентификацию (в отличие от WEP, где аутентифицируется только рабочая станция, но не точка доступа). При этом местами принятия решения о разрешении доступа являются сервер аутентификации AS и рабочая станция STA, а местами исполнения этого решения - точка доступа АР и STA.

Для работы по стандарту 802.Hi создается иерархия ключей, содержащая мастер-ключ МК (Master Key), парный мастер-ключ РМК (Pairwise Master Key), парный временный ключ РТК (Pairwise Transient Key), а также групповые временные ключи GTK (Group Transient Key), служащие для защиты широковещательного сетевого трафика.

МК - это симметричный ключ, реализующий решение STA и AS о взаимной аутентификации. Для каждой сессии создается новый МК.

РМК - обновляемый симметричный ключ, владение которым означает разрешение (авторизацию) на доступ к среде передачи данных в течение данной сессии. РМК создается на основе МК. Для каждой пары STA и АР в каждой сессии создается новый РМК.

РТК - это коллекция операционных ключей, которые используются для привязки РМК к данным STA и АР, распространения GTK и шифрования данных.

Процесс аутентификации и доставки ключей определяется стандартом 802.1 х. Он предоставляет возможность использовать в беспроводных сетях такие традиционные серверы аутентификации, как RADIUS (Remote Authentication Dial-In User Server). Стандарт 802.1 li не определяет тип сервера аутентификации, но использование RADIUS для этой цели является стандартным решением.

Транспортом для сообщений 802.1х служит протокол ЕАР (Extensible Authentication Protocol). ЕАР позволяет легко добавлять новые методы аутентификации. Точке доступа не требуется знать об используемом методе аутентификации, поэтому изменение метода никак не затрагивает точку доступа. Наиболее популярные методы ЕАР - это LEAP, РЕАР, TTLS и FAST. Каждый из методов имеет свои сильные и слабые стороны, условия применения, по-разному поддерживается производителями оборудования и ПО.

Выделяют пять фаз работы 802.11 i.

Первая фаза - обнаружение. В этой фазе рабочая станция STA находит точку доступа АР, с которой может установить связь и получает от нее используемые в данной сети параметры безопасности. Таким образом STA узнает идентификатор сети SSID и методы аутентификации, доступные в данной сети. Затем STA выбирает метод аутентификации, и между STA и АР устанавливается соединение. После этого STA и АР готовы к началу второй фазы 802.1х.

Вторая фаза - аутентификация. В этой фазе выполняется взаимная аутентификация STA и сервера AS, создаются МК и РМК. В данной фазе STA и АР блокируют весь трафик, кроме трафика 802.1х.

Третья фаза - AS перемещает ключ РМК на АР. Теперь STA и АР владеют действительными ключами РМК.

Четвертая фаза - управление ключами 802.1 х. В этой фазе происходит генерация, привязка и верификация ключа РТК.

Пятая фаза - шифрование и передача данных. Для шифрования используется соответствующая часть РТК.

Стандартом 802.1 И предусмотрен режим PSK (Pre-Shared Key), который позволяет обойтись без сервера аутентификации AS. При использовании этого режима на STA и на АР вручную вводится Pre-Shared Key, который используется в качестве РМК. Дальше генерация РТК происходит описанным выше порядком. Режим PS К может использоваться в небольших сетях, где нецелесообразно устанавливать AS.

Вверх