Wspólna wielokrotność online. Dzielniki i wielokrotności

Temat „Liczby wielokrotne” jest realizowany w piątej klasie szkoły średniej. Jego celem jest doskonalenie umiejętności wykonywania obliczeń matematycznych w formie pisemnej i ustnej. Na tej lekcji wprowadzane są nowe pojęcia - ćwiczone są „liczby wielokrotne” i „dzielniki”, technika znajdowania dzielników i wielokrotności liczby naturalnej oraz umiejętność znajdowania LCM na różne sposoby.

Ten temat jest bardzo ważny. Znajomość tego można wykorzystać przy rozwiązywaniu przykładów z ułamkami zwykłymi. Aby to zrobić, musisz znaleźć wspólny mianownik, obliczając najmniejszą wspólną wielokrotność (LCM).

Wielokrotność A to liczba całkowita, która dzieli się przez A bez reszty.

Każda liczba naturalna ma nieskończoną liczbę jej wielokrotności. Sam jest uważany za najmniejszy. Wielokrotność nie może być mniejsza niż sama liczba.

Musisz udowodnić, że liczba 125 jest wielokrotnością 5. Aby to zrobić, musisz podzielić pierwszą liczbę przez drugą. Jeśli 125 dzieli się przez 5 bez reszty, to odpowiedź brzmi „tak”.

Ta metoda ma zastosowanie w przypadku małych liczb.

Istnieją szczególne przypadki przy obliczaniu LOC.

1. Jeśli chcesz znaleźć wspólną wielokrotność 2 liczb (na przykład 80 i 20), gdzie jedna z nich (80) jest podzielna przez drugą (20), to ta liczba (80) jest najmniejszą wielokrotnością tych dwie liczby.

LCM(80, 20) = 80.

2. Jeśli dwie nie mają wspólnego dzielnika, to możemy powiedzieć, że ich LCM jest iloczynem tych dwóch liczb.

LCM(6, 7) = 42.

Spójrzmy na ostatni przykład. 6 i 7 w stosunku do 42 są dzielnikami. Dzielą wielokrotność liczby bez reszty.

W tym przykładzie 6 i 7 to sparowane czynniki. Ich iloczyn jest równy największej liczbie wielokrotnej (42).

Liczbę pierwszą nazywamy liczbą pierwszą, jeśli dzieli się tylko przez samą siebie lub przez 1 (3:1=3; 3:3=1). Pozostałe nazywane są kompozytami.

Inny przykład polega na ustaleniu, czy 9 ​​jest dzielnikiem 42.

42:9=4 (pozostała 6)

Odpowiedź: 9 nie jest dzielnikiem 42, ponieważ odpowiedź ma resztę.

Dzielnik różni się od wielokrotności tym, że dzielnik jest liczbą, przez którą dzielone są liczby naturalne, a sama wielokrotność jest podzielna przez tę liczbę.

Największy wspólny dzielnik liczb A I B, pomnożone przez ich najmniejszą wielokrotność, da iloczyn samych liczb A I B.

Mianowicie: gcd (a, b) x gcd (a, b) = a x b.

Wspólne wielokrotności dla bardziej zespolonych liczb można znaleźć w następujący sposób.

Na przykład znajdź LCM dla 168, 180, 3024.

Rozkładamy te liczby na czynniki pierwsze i zapisujemy je jako iloczyn potęg:

168=2³x3¹x7¹

2⁴х3³х5¹х7¹=15120

LCM(168, 180, 3024) = 15120.

Wielokrotność to liczba, która dzieli się przez podany numer bez śladu. Najmniejsza wspólna wielokrotność (LCM) grupy liczb to najmniejsza liczba, którą można podzielić przez każdą liczbę w grupie bez pozostawiania reszty. Aby znaleźć najmniejszą wspólną wielokrotność, należy znaleźć czynniki pierwsze danych liczb. LCM można również obliczyć przy użyciu szeregu innych metod, które mają zastosowanie do grup dwóch lub więcej liczb.

Kroki

Seria wielokrotności

    Spójrz na te liczby. Opisaną tutaj metodę najlepiej zastosować, gdy podano dwie liczby, z których każda jest mniejsza niż 10. Jeśli podano większe liczby, użyj innej metody.

    • Na przykład znajdź najmniejszą wspólną wielokrotność 5 i 8. Są to małe liczby, więc możesz zastosować tę metodę.
  1. Wielokrotność to liczba, która dzieli się przez daną liczbę bez reszty. Wielokrotności można znaleźć w tabliczce mnożenia.

    • Na przykład liczby będące wielokrotnościami 5 to: 5, 10, 15, 20, 25, 30, 35, 40.
  2. Zapisz ciąg liczb będący wielokrotnością pierwszej liczby. Zrób to pod wielokrotnościami pierwszej liczby, aby porównać dwa zestawy liczb.

    • Na przykład liczby będące wielokrotnościami 8 to: 8, 16, 24, 32, 40, 48, 56 i 64.
  3. Znajdź najmniejszą liczbę występującą w obu zbiorach wielokrotności. Aby znaleźć całkowitą liczbę, konieczne może być napisanie długich serii wielokrotności. Najmniejsza liczba występująca w obu zbiorach wielokrotności jest najmniejszą wspólną wielokrotnością.

    • Na przykład, najmniejsza liczba, który występuje w szeregu wielokrotności 5 i 8, jest liczbą 40. Dlatego 40 jest najmniejszą wspólną wielokrotnością 5 i 8.

    Faktoryzacja pierwsza

    1. Spójrz na te liczby. Opisaną tutaj metodę najlepiej zastosować, gdy podano dwie liczby, z których każda jest większa niż 10. Jeśli podano mniejsze liczby, użyj innej metody.

      • Na przykład znajdź najmniejszą wspólną wielokrotność liczb 20 i 84. Każda z liczb jest większa niż 10, więc możesz zastosować tę metodę.
    2. Rozłóż pierwszą liczbę na czynniki pierwsze. Oznacza to, że musisz znaleźć takie liczby pierwsze, które po pomnożeniu dadzą daną liczbę. Po znalezieniu czynników pierwszych zapisz je jako równości.

      • Na przykład, 2 × 10 = 20 (\ Displaystyle (\ mathbf (2)) \ razy 10 = 20) I 2 × 5 = 10 (\ Displaystyle (\ mathbf (2)) \ razy (\ mathbf (5)) = 10). Zatem czynnikami pierwszymi liczby 20 są liczby 2, 2 i 5. Zapisz je jako wyrażenie: .
    3. Rozłóż drugą liczbę na czynniki pierwsze. Zrób to w taki sam sposób, jak rozłożyłeś pierwszą liczbę, czyli znajdź takie liczby pierwsze, które po pomnożeniu dadzą podaną liczbę.

      • Na przykład, 2 × 42 = 84 (\ Displaystyle (\ mathbf (2)) \ razy 42 = 84), 7 × 6 = 42 (\ Displaystyle (\ mathbf (7)) \ razy 6 = 42) I 3 × 2 = 6 (\ Displaystyle (\ mathbf (3)) \ razy (\ mathbf (2)) = 6). Zatem czynnikami pierwszymi liczby 84 są liczby 2, 7, 3 i 2. Zapisz je jako wyrażenie: .
    4. Zapisz czynniki wspólne obu liczb. Zapisz takie czynniki, jak operacja mnożenia. Podczas wpisywania każdego czynnika przekreśl go w obu wyrażeniach (wyrażeniach opisujących rozkład liczb na czynniki pierwsze).

      • Na przykład obie liczby mają wspólny współczynnik 2, więc napisz 2 × (\ Displaystyle 2 \ razy) i skreśl 2 w obu wyrażeniach.
      • To, co łączy obie liczby, to kolejny współczynnik 2, więc pisz 2 × 2 (\ Displaystyle 2 \ razy 2) i skreśl drugie 2 w obu wyrażeniach.
    5. Dodaj pozostałe czynniki do operacji mnożenia. Są to czynniki, które nie są przekreślone w obu wyrażeniach, czyli czynniki, które nie są wspólne dla obu liczb.

      • Na przykład w wyrażeniu 20 = 2 × 2 × 5 (\ Displaystyle 20 = 2 \ razy 2 \ razy 5) Obie dwójki (2) zostały przekreślone, ponieważ są to czynniki wspólne. Współczynnik 5 nie jest przekreślony, dlatego zapisz operację mnożenia w następujący sposób: 2 × 2 × 5 (\ Displaystyle 2 \ razy 2 \ razy 5)
      • W wyrazie 84 = 2 × 7 × 3 × 2 (\ Displaystyle 84 = 2 \ razy 7 \ razy 3 \ razy 2) obie dwójki (2) są również przekreślone. Współczynniki 7 i 3 nie są przekreślone, więc zapisz operację mnożenia w następujący sposób: 2 × 2 × 5 × 7 × 3 (\ Displaystyle 2 \ razy 2 \ razy 5 \ razy 7 \ razy 3).
    6. Oblicz najmniejszą wspólną wielokrotność. Aby to zrobić, pomnóż liczby w zapisanej operacji mnożenia.

      • Na przykład, 2 × 2 × 5 × 7 × 3 = 420 (\ Displaystyle 2 \ razy 2 \ razy 5 \ razy 7 \ razy 3 = 420). Zatem najmniejszą wspólną wielokrotnością 20 i 84 jest 420.

    Znalezienie wspólnych czynników

    1. Narysuj siatkę przypominającą grę w kółko i krzyżyk. Taka siatka składa się z dwóch równoległych linii, które przecinają się (pod kątem prostym) z kolejnymi dwiema równoległymi liniami. To da ci trzy wiersze i trzy kolumny (siatka wygląda bardzo podobnie do ikony #). Wpisz pierwszą liczbę w pierwszym wierszu i drugiej kolumnie. Wpisz drugą liczbę w pierwszym rzędzie i trzeciej kolumnie.

      • Na przykład znajdź najmniejszą wspólną wielokrotność liczb 18 i 30. Wpisz liczbę 18 w pierwszym rzędzie i drugiej kolumnie, a liczbę 30 w pierwszym rzędzie i trzeciej kolumnie.
    2. Znajdź wspólny dzielnik obu liczb. Zapisz to w pierwszym wierszu i pierwszej kolumnie. Lepiej jest szukać czynników pierwszych, ale nie jest to wymagane.

      • Na przykład 18 i 30 to liczby parzyste, więc ich wspólny dzielnik wynosi 2. Zatem wpisz 2 w pierwszym wierszu i pierwszej kolumnie.
    3. Podziel każdą liczbę przez pierwszy dzielnik. Wpisz każdy iloraz pod odpowiednią liczbą. Iloraz jest wynikiem dzielenia dwóch liczb.

      • Na przykład, 18 ÷ 2 = 9 (\ Displaystyle 18 \ div 2 = 9), więc wpisz 9 pod 18.
      • 30 ÷ 2 = 15 (\ Displaystyle 30 \ div 2 = 15), więc zapisz 15 poniżej 30.
    4. Znajdź dzielnik wspólny dla obu ilorazów. Jeżeli nie ma takiego dzielnika, pomiń kolejne dwa kroki. W przeciwnym razie wpisz dzielnik w drugim wierszu i pierwszej kolumnie.

      • Na przykład 9 i 15 są podzielne przez 3, więc wpisz 3 w drugim rzędzie i pierwszej kolumnie.
    5. Podziel każdy iloraz przez jego drugi dzielnik. Zapisz każdy wynik dzielenia pod odpowiednim ilorazem.

      • Na przykład, 9 ÷ 3 = 3 (\ Displaystyle 9 \ div 3 = 3), więc napisz 3 pod 9.
      • 15 ÷ 3 = 5 (\ Displaystyle 15 \ div 3 = 5), więc napisz 5 pod 15.
    6. Jeśli to konieczne, dodaj dodatkowe komórki do siatki. Powtarzaj opisane kroki, aż ilorazy będą miały wspólny dzielnik.

    7. Zakreśl liczby w pierwszej kolumnie i ostatnim rzędzie siatki. Następnie zapisz wybrane liczby w formie operacji mnożenia.

      • Na przykład liczby 2 i 3 znajdują się w pierwszej kolumnie, a liczby 3 i 5 w ostatnim wierszu, więc zapisz operację mnożenia w następujący sposób: 2 × 3 × 3 × 5 (\ Displaystyle 2 \ razy 3 \ razy 3 \ razy 5).
    8. Znajdź wynik mnożenia liczb. Spowoduje to obliczenie najmniejszej wspólnej wielokrotności dwóch podanych liczb.

      • Na przykład, 2 × 3 × 3 × 5 = 90 (\ Displaystyle 2 \ razy 3 \ razy 3 \ razy 5 = 90). Zatem najmniejszą wspólną wielokrotnością 18 i 30 jest 90.

    Algorytm Euklidesa

    1. Zapamiętaj terminologię związaną z operacją dzielenia. Dzielna to liczba, która jest dzielona. Dzielnik to liczba, przez którą jest dzielona. Iloraz jest wynikiem dzielenia dwóch liczb. Reszta to liczba, która pozostaje po podzieleniu dwóch liczb.

      • Na przykład w wyrażeniu 15 ÷ 6 = 2 (\ Displaystyle 15 \ div 6 = 2) ost. 3:
        15 to dywidenda
        6 to dzielnik
        2 jest ilorazem
        3 to reszta.

Rozważmy rozwiązanie następującego problemu. Krok chłopca wynosi 75 cm, a krok dziewczynki 60 cm Należy znaleźć najmniejszą odległość, na której oboje wykonają całkowitą liczbę kroków.

Rozwiązanie. Cała ścieżka, którą przejdą chłopcy, musi być podzielna przez 60 i 70, ponieważ każdy z nich musi wykonać całkowitą liczbę kroków. Innymi słowy, odpowiedź musi być wielokrotnością 75 i 60.

Najpierw zapiszemy wszystkie wielokrotności liczby 75. Otrzymujemy:

  • 75, 150, 225, 300, 375, 450, 525, 600, 675, … .

Teraz zapiszmy liczby, które będą wielokrotnościami 60. Otrzymujemy:

  • 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 660, … .

Teraz znajdujemy liczby znajdujące się w obu wierszach.

  • Typowe wielokrotności liczb to 300, 600 itd.

Najmniejszą z nich jest liczba 300. W tym przypadku będzie ona nazywana najmniejszą wspólną wielokrotnością liczb 75 i 60.

Wracając do stanu problemu, najmniejsza odległość, na jaką chłopcy wykonają całkowitą liczbę kroków, wyniesie 300 cm, chłopiec pokona tę ścieżkę w 4 krokach, a dziewczyna będzie musiała zrobić 5 kroków.

Wyznaczanie najmniejszej wspólnej wielokrotności

  • Najmniejsza wspólna wielokrotność dwóch liczb naturalnych a i b to najmniejsza liczba naturalna będąca wielokrotnością obu liczb a i b.

Aby znaleźć najmniejszą wspólną wielokrotność dwóch liczb, nie trzeba wpisywać z rzędu wszystkich wielokrotności tych liczb.

Możesz zastosować następującą metodę.

Jak znaleźć najmniejszą wspólną wielokrotność

Najpierw musisz rozłożyć te liczby na czynniki pierwsze.

  • 60 = 2*2*3*5,
  • 75=3*5*5.

Zapiszmy teraz wszystkie czynniki biorące udział w rozwinięciu pierwszej liczby (2,2,3,5) i dodajmy do tego wszystkie brakujące czynniki z rozwinięcia drugiej liczby (5).

W rezultacie otrzymujemy szereg liczb pierwszych: 2,2,3,5,5. Iloczyn tych liczb będzie najmniej wspólnym dzielnikiem tych liczb. 2*2*3*5*5 = 300.

Ogólny schemat znajdowania najmniejszej wspólnej wielokrotności

  • 1. Podziel liczby na czynniki pierwsze.
  • 2. Zapisz czynniki pierwsze wchodzące w skład jednego z nich.
  • 3. Dodaj do tych czynników wszystkie, które są w ekspansji innych, ale nie w wybranym.
  • 4. Znajdź iloczyn wszystkich zapisanych czynników.

Ta metoda jest uniwersalna. Można go użyć do znalezienia najmniejszej wspólnej wielokrotności dowolnej liczby liczb naturalnych.

Najmniejsza wspólna wielokrotność dwóch liczb jest bezpośrednio powiązana z największym wspólnym dzielnikiem tych liczb. Ten połączenie pomiędzy GCD i NOC jest określona przez następujące twierdzenie.

Twierdzenie.

Najmniejsza wspólna wielokrotność dwóch dodatnich liczb całkowitych aib jest równa iloczynowi aib podzielonemu przez największy wspólny dzielnik aib, czyli LCM(a, b)=a b:GCD(a, b).

Dowód.

Pozwalać M jest pewną wielokrotnością liczb a i b. Oznacza to, że M jest podzielne przez a i zgodnie z definicją podzielności istnieje liczba całkowita k taka, że ​​prawdziwa jest równość M=a·k. Ale M jest także podzielne przez b, zatem a·k jest podzielne przez b.

Oznaczmy gcd(a, b) jako d. Wtedy możemy zapisać równości a=a 1 ·d i b=b 1 ·d, a a 1 =a:d i b 1 =b:d będą liczbami względnie pierwszymi. W rezultacie warunek uzyskany w poprzednim akapicie, że a · k jest podzielne przez b, można przeformułować w następujący sposób: a 1 · d · k dzieli się przez b 1 · d , co ze względu na właściwości podzielności jest równoważne warunkowi że a 1 · k jest podzielne przez b 1 .

Należy także zapisać dwa ważne wnioski z rozważanego twierdzenia.

    Wspólne wielokrotności dwóch liczb są takie same, jak wielokrotności ich najmniejszej wspólnej wielokrotności.

    Rzeczywiście tak jest, ponieważ każda wspólna wielokrotność M liczb aib jest określona przez równość M=LMK(a, b)·t dla pewnej wartości całkowitej t.

    Najmniejsza wspólna wielokrotność wzajemnie pierwszych liczb dodatnich aib jest równa ich iloczynowi.

    Uzasadnienie tego faktu jest dość oczywiste. Ponieważ a i b są względnie pierwsze, to zatem gcd(a, b)=1 NWD(a, b)=a b: NWD(a, b)=a b:1=a b.

Najmniejsza wspólna wielokrotność trzech lub więcej liczb

Znalezienie najmniejszej wspólnej wielokrotności trzech lub więcej liczb można sprowadzić do sekwencyjnego znajdowania LCM dwóch liczb. Jak to się robi, pokazuje następujące twierdzenie: a 1 , a 2 , …, a k pokrywają się ze wspólnymi wielokrotnościami liczb m k-1 i a k ​​zatem pokrywają się ze wspólnymi wielokrotnościami liczby m k . A ponieważ najmniejszą dodatnią wielokrotnością liczby m k jest sama liczba m k, to najmniejszą wspólną wielokrotnością liczb a 1, a 2, ..., a k jest m k.

Bibliografia.

  • Vilenkin N.Ya. i inne Matematyka. Klasa 6: podręcznik dla placówek kształcenia ogólnego.
  • Winogradow I.M. Podstawy teorii liczb.
  • Mikhelovich Sh.H. Teoria liczb.
  • Kulikov L.Ya. i inne Zbiór zagadnień z algebry i teorii liczb: Instruktaż dla studentów fizyki i matematyki. specjalności instytutów pedagogicznych.

Drugi numer: b=

Separator tysięcy Bez separatora spacji „”.

Wynik:

Największy wspólny dzielnik gcd( A,B)=6

Najmniejsza wspólna wielokrotność LCM ( A,B)=468

Nazywa się największą liczbę naturalną, którą można podzielić bez reszty przez liczby a i b Największy wspólny dzielnik(GCD) tych liczb. Oznaczone przez gcd(a,b), (a,b), gcd(a,b) lub hcf(a,b).

Najmniejsza wspólna wielokrotność LCM dwóch liczb całkowitych aib jest najmniejszą liczbą naturalną, która dzieli się przez aib bez reszty. Oznaczone jako LCM(a,b) lub lcm(a,b).

Nazywa się liczby całkowite a i b wzajemnie pierwsze, jeśli nie mają wspólnych dzielników innych niż +1 i -1.

Największy wspólny dzielnik

Niech zostaną dane dwa liczby dodatnie A 1 i A 2 1). Konieczne jest znalezienie wspólnego dzielnika tych liczb, tj. znajdź taką liczbę λ , który dzieli liczby A 1 i A 2 jednocześnie. Opiszmy algorytm.

1) W tym artykule liczba słów będzie rozumiana jako liczba całkowita.

Pozwalać A 1 ≥ A 2 i niech

Gdzie M 1 , A 3 to niektóre liczby całkowite, A 3 <A 2 (reszta z dzielenia A 1 os A 2 powinno być mniej A 2).

Udawajmy, że λ dzieli A 1 i A 2 wtedy λ dzieli M 1 A 2 i λ dzieli A 1 −M 1 A 2 =A 3 (Stwierdzenie 2 artykułu „Podzielność liczb. Test na podzielność”). Wynika z tego, że każdy wspólny dzielnik A 1 i A 2 jest wspólnym dzielnikiem A 2 i A 3. Odwrotna sytuacja jest również prawdą, jeśli λ wspólny dzielnik A 2 i A 3 wtedy M 1 A 2 i A 1 =M 1 A 2 +A 3 jest również podzielne przez λ . Dlatego wspólny dzielnik A 2 i A 3 jest także wspólnym dzielnikiem A 1 i A 2. Ponieważ A 3 <A 2 ≤A 1, to możemy powiedzieć, że jest to rozwiązanie problemu znalezienia wspólnego dzielnika liczb A 1 i A 2 zredukowano do prostszego problemu znalezienia wspólnego dzielnika liczb A 2 i A 3 .

Jeśli A 3 ≠0, to możemy dzielić A 2 os A 3. Następnie

,

Gdzie M 1 i A 4 to niektóre liczby całkowite, ( A 4 pozostałe z dzielenia A 2 os A 3 (A 4 <A 3)). Z podobnego rozumowania dochodzimy do wniosku, że wspólne dzielniki liczb A 3 i A 4 pokrywa się ze wspólnymi dzielnikami liczb A 2 i A 3, a także ze wspólnymi dzielnikami A 1 i A 2. Ponieważ A 1 , A 2 , A 3 , A 4, ... to liczby, które stale maleją, a pomiędzy nimi jest skończona liczba liczb całkowitych A 2 i 0, a potem w pewnym momencie N, pozostała część podziału A n A n+1 będzie równe zero ( A n+2 =0).

.

Każdy wspólny dzielnik λ liczby A 1 i A 2 jest także dzielnikiem liczb A 2 i A 3 , A 3 i A 4 , .... A n i A n+1 . Odwrotna sytuacja jest również prawdą, wspólne dzielniki liczb A n i A n+1 są także dzielnikami liczb A n-1 i A N , .... , A 2 i A 3 , A 1 i A 2. Ale wspólny dzielnik liczb A n i A n+1 to liczba A n+1 , ponieważ A n i A n+1 jest podzielne przez A n+1 (pamiętaj o tym A n+2 =0). Stąd A n+1 jest także dzielnikiem liczb A 1 i A 2 .

Należy pamiętać, że liczba A n+1 to największy dzielnik liczb A n i A n+1 , od największego dzielnika A n+1 jest sobą A n+1 . Jeśli A n+1 można przedstawić jako iloczyn liczb całkowitych, wówczas liczby te są również wspólnymi dzielnikami liczb A 1 i A 2. Numer A nazywa się n+1 Największy wspólny dzielnik liczby A 1 i A 2 .

Liczby A 1 i A 2 może być liczbą dodatnią lub ujemną. Jeżeli jedna z liczb jest równa zero, to największy wspólny dzielnik tych liczb będzie równy wartości bezwzględnej drugiej liczby. Największy wspólny dzielnik liczb zerowych jest nieokreślony.

Powyższy algorytm nazywa się Algorytm euklidesowy znaleźć największy wspólny dzielnik dwóch liczb całkowitych.

Przykład znalezienia największego wspólnego dzielnika dwóch liczb

Znajdź największy wspólny dzielnik dwóch liczb 630 i 434.

  • Krok 1. Podziel liczbę 630 przez 434. Reszta to 196.
  • Krok 2. Podziel liczbę 434 przez 196. Reszta to 42.
  • Krok 3. Podziel liczbę 196 przez 42. Reszta to 28.
  • Krok 4. Podziel liczbę 42 przez 28. Reszta to 14.
  • Krok 5. Podziel liczbę 28 przez 14. Reszta to 0.

W kroku 5 reszta dzielenia wynosi 0. Zatem największym wspólnym dzielnikiem liczb 630 i 434 jest 14. Zauważ, że liczby 2 i 7 są również dzielnikami liczb 630 i 434.

Liczby względnie pierwsze

Definicja 1. Niech największy wspólny dzielnik liczb A 1 i A 2 równa się jeden. Następnie te liczby są wywoływane wzajemnie liczby pierwsze , nie mający wspólnego dzielnika.

Twierdzenie 1. Jeśli A 1 i A 2 liczby względnie pierwsze i λ pewna liczba, a następnie dowolny wspólny dzielnik liczb λa 1 i A 2 jest także wspólnym dzielnikiem liczb λ I A 2 .

Dowód. Rozważmy algorytm Euklidesa służący do znajdowania największego wspólnego dzielnika liczb A 1 i A 2 (patrz wyżej).

.

Z warunków twierdzenia wynika, że ​​największy wspólny dzielnik liczb A 1 i A 2 i dlatego A n i A n+1 równa się 1. To znaczy A n+1 =1.

Pomnóżmy wszystkie te równości przez λ , Następnie

.

Niech wspólny dzielnik A 1 λ I A 2 tak δ . Następnie δ jest uwzględniany jako mnożnik w A 1 λ , M 1 A 2 λ i w A 1 λ -M 1 A 2 λ =A 3 λ (patrz „Podzielność liczb”, stwierdzenie 2). Dalej δ jest uwzględniany jako mnożnik w A 2 λ I M 2 A 3 λ , a zatem jest czynnikiem A 2 λ -M 2 A 3 λ =A 4 λ .

Rozumując w ten sposób, jesteśmy o tym przekonani δ jest uwzględniany jako mnożnik w A n-1 λ I M n-1 A N λ , a zatem w A n-1 λ M n-1 A N λ =A n+1 λ . Ponieważ A n+1 =1, zatem δ jest uwzględniany jako mnożnik w λ . Dlatego liczba δ jest wspólnym dzielnikiem liczb λ I A 2 .

Rozważmy szczególne przypadki twierdzenia 1.

Konsekwencja 1. Pozwalać A I C Liczby pierwsze są względne B. Potem ich produkt AC jest liczbą pierwszą względem B.

Naprawdę. Z twierdzenia 1 AC I B mają takie same wspólne dzielniki jak C I B. Ale liczby C I B stosunkowo proste, tj. mają jeden wspólny dzielnik 1. Następnie AC I B mają również jeden wspólny dzielnik 1. Dlatego AC I B wzajemnie proste.

Konsekwencja 2. Pozwalać A I B liczby względnie pierwsze i niech B dzieli ok. Następnie B dzieli i k.

Naprawdę. Od warunku zatwierdzenia ok I B mają wspólny dzielnik B. Na mocy Twierdzenia 1, B musi być wspólnym dzielnikiem B I k. Stąd B dzieli k.

Wniosek 1 można uogólnić.

Konsekwencja 3. 1. Niech liczby A 1 , A 2 , A 3 , ..., A m są liczbą pierwszą w stosunku do liczby B. Następnie A 1 A 2 , A 1 A 2 · A 3 , ..., A 1 A 2 A 3 ··· A m, iloczyn tych liczb jest liczbą pierwszą B.

2. Miejmy dwa rzędy liczb

tak, że każda liczba z pierwszego szeregu jest liczbą pierwszą w stosunku do każdej liczby z drugiego szeregu. Następnie produkt

Musisz znaleźć liczby podzielne przez każdą z tych liczb.

Jeśli liczba jest podzielna przez A 1, to ma postać sa 1 gdzie S jakiś numer. Jeśli Q jest największym wspólnym dzielnikiem liczb A 1 i A 2, zatem

Gdzie S 1 to pewna liczba całkowita. Następnie

Jest najmniejsza wspólna wielokrotność liczb A 1 i A 2 .

A 1 i A 2 są względnie pierwsze, to najmniejsza wspólna wielokrotność liczb A 1 i A 2:

Musimy znaleźć najmniejszą wspólną wielokrotność tych liczb.

Z powyższego wynika, że ​​dowolna wielokrotność liczb A 1 , A 2 , A 3 musi być wielokrotnością liczb ε I A 3 i z powrotem. Niech najmniejsza wspólna wielokrotność liczb ε I A 3 tak ε 1. Następnie wielokrotności liczb A 1 , A 2 , A 3 , A Liczba 4 musi być wielokrotnością liczb ε 1 i A 4. Niech najmniejsza wspólna wielokrotność liczb ε 1 i A 4 tak ε 2. W ten sposób dowiedzieliśmy się, że wszystkie wielokrotności liczb A 1 , A 2 , A 3 ,...,A m pokrywają się z wielokrotnościami pewnej liczby ε n, co nazywa się najmniejszą wspólną wielokrotnością danych liczb.

W szczególnym przypadku, gdy liczby A 1 , A 2 , A 3 ,...,A m są względnie pierwsze, to najmniejsza wspólna wielokrotność liczb A 1 , A 2, jak pokazano powyżej, ma postać (3). Następny, od A 3 liczby pierwsze w odniesieniu do liczb A 1 , A 2 wtedy A 3 liczba pierwsza A 1 · A 2 (wniosek 1). Oznacza najmniejszą wspólną wielokrotność liczb A 1 ,A 2 ,A 3 to liczba A 1 · A 2 · A 3. Rozumując w podobny sposób, dochodzimy do następujących stwierdzeń.

Oświadczenie 1. Najmniejsza wspólna wielokrotność liczb względnie pierwszych A 1 , A 2 , A 3 ,...,A m jest równe ich iloczynowi A 1 · A 2 · A 3 ··· A M.

Oświadczenie 2. Dowolna liczba, która jest podzielna przez każdą z liczb stosunkowo pierwszych A 1 , A 2 , A 3 ,...,A m jest również podzielne przez ich iloczyn A 1 · A 2 · A 3 ··· A M.

W górę