Химический состав клетки органические и минеральные вещества. Химический состав клетки

В составе живых организмов обнаружено большинство химических элементов Периодической системы элементов Д. И. Менделеева, открытых к настоящему времени. С одной стороны, в них не содержится ни одного элемента, которого не было бы в неживой природе, а с другой стороны, их концентрации в телах неживой природы и живых организмах существенно различаются.

Эти химические элементы образуют неорганические и органические вещества. Несмотря на то, что в живых организмах преобладают неорганические вещества, именно органические вещества определяют уникальность их химического состава и феномена жизни в целом, поскольку они синтезируются преимущественно организмами в процессе жизнедеятельности и играют в реакциях важнейшую роль.

Изучением химического состава организмов и химических реакций, протекающих в них, занимается наука биохимия.

Следует отметить, что содержание химических веществ в различных клетках и тканях может существенно различаться. Например, если в животных клетках среди органических соединений преобладают белки, то в клетках растений - углеводы.

Химический элемент Земная кора Морская вода Живые организмы
O 49.2 85.8 65–75
C 0.4 0.0035 15–18
H 1.0 10.67 8–10
N 0.04 0.37 1.5–3.0
P 0.1 0.003 0.20–1.0
S 0.15 0.09 0.15–0.2
K 2.35 0.04 0.15–0.4
Ca 3.25 0.05 0.04–2.0
Cl 0.2 0.06 0.05–0.1
Mg 2.35 0.14 0.02–0.03
Na 2.4 1.14 0.02–0.03
Fe 4.2 0.00015 0.01–0.015
Zn < 0.01 0.00015 0.0003
Cu < 0.01 < 0.00001 0.0002
I < 0.01 0.000015 0.0001
F 0.1 2.07 0.0001

Макро- и микроэлементы

В живых организмах встречается около 80 химических элементов, однако только для 27 из этих элементов установлены их функции в клетке и организме. Остальные элементы присутствуют в незначительных количествах, и, по-видимому, попадают в организм с пищей, водой и воздухом. Содержание химических элементов в организме существенно различается. В зависимости от концентрации их делят на макроэлементы и микроэлементы.

Концентрация каждого из макроэлементов в организме превышает 0,01 %, а их суммарное содержание - 99 %. К макроэлементам относят кислород, углерод, водород, азот, фосфор, серу, калий, кальций, натрий, хлор, магний и железо. Первые четыре из перечисленных элементов (кислород, углерод, водород и азот) называют также органогенными , поскольку они входят в состав основных органических соединений. Фосфор и сера также являются компонентами ряда органических веществ, например белков и нуклеиновых кислот. Фосфор необходим для формирования костей и зубов.

Без оставшихся макроэлементов невозможно нормальное функционирование организма. Так, калий, натрий и хлор участвуют в процессах возбуждения клеток. Калий также необходим для работы многих ферментов и удержания воды в клетке. Кальций входит в состав клеточных стенок растений, костей, зубов и раковин моллюсков и требуется для сокращения мышечных клеток, а также для внутриклеточного движения. Магний является компонентом хлорофилла - пигмента, обеспечивающего протекание фотосинтеза. Он также принимает участие в биосинтезе белка. Железо, помимо того, что оно входит в состав гемоглобина, переносящего кислород в крови, необходимо для протекания процессов дыхания и фотосинтеза, а также для функционирования многих ферментов.

Микроэлементы содержатся в организме в концентрациях менее 0,01 %, а их суммарная концентрация в клетке не достигает и 0,1 %. К микроэлементам относятся цинк, медь, марганец, кобальт, йод, фтор и др. Цинк входит в состав молекулы гормона поджелудочной железы - инсулина, медь требуется для процессов фотосинтеза и дыхания. Кобальт является компонентом витамина В12, отсутствие которого приводит к анемии. Йод необходим для синтеза гормонов щитовидной железы, обеспечивающих нормальное протекание обмена веществ, а фтор связан с формированием эмали зубов.

Как недостаток, так и избыток или нарушение обмена макро- и микроэлементов приводят к развитию различных заболеваний. В частности, недостаток кальция и фосфора вызывает рахит, нехватка азота - тяжелую белковую недостаточность, дефицит железа - анемию, а отсутствие йода - нарушение образования гормонов щитовидной железы и снижение интенсивности обмена веществ. Уменьшение поступления фтора с водой и пищей в значительной степени обусловливает нарушение обновления эмали зубов и, как следствие, предрасположенность к кариесу. Свинец токсичен почти для всех организмов. Его избыток вызывает необратимые повреждения головного мозга и центральной нервной системы, что проявляется потерей зрения и слуха, бессонницей, почечной недостаточностью, судорогами, а также может привести к параличу и такому заболеванию, как рак. Острое отравление свинцом сопровождается внезапными галлюцинациями и заканчивается комой и смертью.

Недостаток макро- и микроэлементов можно компенсировать путем увеличения их содержания в пище и питьевой воде, а также за счет приема лекарственных препаратов. Так, йод содержится в морепродуктах и йодированной соли, кальций - в яичной скорлупе и т. п.

Взаимосвязь строения и функций неорганических и органических веществ (белков, нуклеиновых кислот, углеводов, липидов, АТФ), входящих в состав клетки. Роль химических веществ в клетке и организме человека

Неорганические вещества

Химические элементы клетки образуют различные соединения - неорганические и органические. К неорганическим веществам клетки относятся вода, минеральные соли, кислоты и др., а к органическим - белки, нуклеиновые кислоты, углеводы, липиды, АТФ, витамины и др..

Вода (Н 2 О) - наиболее распространенное неорганическое вещество клетки, обладающее уникальными физико-химическими свойствами. У нее нет ни вкуса, ни цвета, ни запаха. Плотность и вязкость всех веществ оценивается по воде. Как и многие другие вещества, вода может находиться в трех агрегатных состояниях: твердом (лед), жидком и газообразном (пар). Температура плавления воды - 0°С, температура кипения - 100°С, однако растворение в воде других веществ может изменять эти характеристики. Теплоемкость воды также достаточно велика - 4200 кДж/моль·К, что дает ей возможность принимать участие в процессах терморегуляции. В молекуле воды атомы водорода расположены под углом 105°, при этом общие электронные пары оттягиваются более электроотрицательным атомом кислорода. Это обусловливает дипольные свойства молекул воды (один их конец заряжен положительно, а другой - отрицательно) и возможность образования между молекулами воды водородных связей. Сцепление молекул воды лежит в основе явления поверхностного натяжения, капиллярности и свойств воды как универсального растворителя. Вследствие этого все вещества делятся на растворимые в воде (гидрофильные) и нерастворимые в ней (гидрофобные). Благодаря этим уникальным свойствам предопределено то, что вода стала основой жизни на Земле.

Среднее содержание воды в клетках организма неодинаково и может изменяться с возрастом. Так, у полуторамесячного эмбриона человека содержание воды в клетках достигает 97,5 %, у восьмимесячного - 83 %, у новорожденного снижается до 74 %, а у взрослого человека составляет в среднем 66 %. Однако клетки организма различаются содержанием воды. Так, в костях содержится около 20 % воды, в печени - 70 %, а в мозге - 86 %. В целом можно сказать, что концентрация воды в клетках прямо пропорциональна интенсивности обмена веществ .

Минеральные соли могут находиться в растворенном или нерастворенном состояниях. Растворимые соли диссоциируют на ионы - катионы и анионы. Наиболее важными катионами являются ионы калия и натрия, облегчающие перенос веществ через мембрану и участвующие в возникновении и проведении нервного импульса; а также ионы кальция, который принимает участие в процессах сокращения мышечных волокон и свертывании крови; магния, входящего в состав хлорофилла; железа, входящего в состав ряда белков, в том числе гемоглобина. Важнейшими анионами являются фосфат-анион, входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты, смягчающий колебания рН среды. Ионы минеральных солей обеспечивают и проникновение самой воды в клетку, и ее удержание в ней. Если в среде концентрация солей ниже, чем в клетке, то вода проникает в клетку. Также ионы определяют буферные свойства цитоплазмы, т. е. ее способность поддерживать постоянство слабощелочной рН цитоплазмы, несмотря на постоянное образование в клетке кислотных и щелочных продуктов.

Нерастворимые соли (CaCO 3 , Ca 3 (PO 4) 2 и др.) входят в состав костей, зубов, раковин и панцирей одноклеточных и многоклеточных животных.

Кроме того, в организмах могут вырабатываться и другие неорганические соединения, например кислоты и оксиды. Так, обкладочные клетки желудка человека вырабатывают соляную кислоту, которая активирует пищеварительный фермент пепсин, а оксид кремния пропитывает клеточные стенки хвощей и образует панцири диатомовых водорослей. В последние годы исследуется также роль оксида азота (II) в передаче сигналов в клетках и организме.

Органические вещества

Содержание химических клетки. Клетки живых существ существенно отличаются от окружающей их среды не только по структуре химических соединений, входящих в их состав, но также по набору и содержанию химических элементов. Из известных в настоящее время химических элементов в живой природе обнаружено около 90. В зависимости от содержания этих элементов в организмах живых существ их можно разделить на три группы:

1) макроэлементы , то есть элементы, содержащиеся в клетках в значительных количествах (от десятков процентов до сотых долей процента). К этой группе относятся , кислород, углерод, азот, натрий, кальций, фосфор, сера, калий, хлор. В сумме эти элементы составляют около 99% массы клеток, причем 98% приходится на долю первых четырех элементов (водород, кислород, углерод и азот).

2) микроэлементы , на долю которых приходится менее сотых долей процента от массы . К этим элементам относятся железо, цинк, марганец, кобальт, медь, никель, йод, фтор. В сумме они составляют около 1% массы клеток. Невзирая на то, что содержание этих элементов в клетке мало, они необходимы для ее жизнедеятельности. При отсутствии или низком содержании таких элементов возникают различные заболевания. Нехватка йода, например, приводит у человека к возникновению заболеваний щитовидной железы, а недостаток железа может вызвать анемию.

3) ультрамикроэлементы , содержание которых в клетке крайне мало (менее 10 -12 %). В эту группу входят бром, золото, селен, серебро, ванадий и многие другие элементы. Большинство этих элементов также необходимы для нормального функционирования организмов. Так, например, дефицит селена приводит к возникновению раковых заболеваний, а недостаток бора вызывает заболевание у растений. Некоторые элементы этой группы, как и микроэлементы, входят в состав ферментов.

В отличие от живых организмов, в земной коре самыми распространенными элементами являются кислород, кремний, алюминий и натрий. Поскольку содержание углерода, водорода и азота в живом веществе выше, чем в земной коре, можно сделать вывод, что молекулы, в состав которых входят этих элементов, необходимы для осуществления процессов, обеспечивающих жизнедеятельность.

Четыре наиболее распространенных в живой материи элемента обладают одним общим свойством: они легко образуют ковалентные связи за счет спаривания электронов. Для того чтобы образовать стабильные электронные связи, атому водорода на внешней электронной оболочке недостает одного электрона, атому кислорода - двух, азота - трех и углерода - четырех электронов. Эти элементы могут легко реагировать друг с другом, заполняя внешние электронные оболочки. Помимо этого, три элемента: азот, кислород и углерод - способны образовывать как одинарные, так и двойные связи, благодаря чему значительно возрастает количество химических соединений, построенных из этих элементов.

Углерод, водород и кислород оказались подходящими для образования живой материи еще и потому, что они самые легкие среди элементов, образующих ковалентные связи. Очень важной с точки зрения биологии является также способность атома углерода образовывать ковалентные связи сразу с четырьмя другими атомами углерода. Таким образом, ковалентно связанные атомы углерода способны формировать каркасы огромного количества самых разных органических молекул.

И другие неорганические вещества, их роль в жизнедеятельности клеток. Большинство химических соединений, из которых состоит клетка, характерны только для живых организмов. Однако в клетке есть ряд веществ, встречающихся и в неживой природе. Это в первую очередь вода, которая в среднем составляет около 80% от массы клеток (ее содержание может колебаться в зависимости от вида клетки и ее возраста), а также некоторые соли.

Вода — это крайне необычное в физическом и химическом отношении вещество, которое значительно отличается по свойствам от других растворителей. Первые клетки возникли в первичном океане и в процессе дальнейшего развития научились использовать эти уникальные свойства воды.

По сравнению с другими жидкостями вода характеризуется необычно высокой температурой кипения, плавления, удельной теплоемкостью, а также большими теплотой испарения, плавления, теплопроводностью и поверхностным натяжением. Это обусловлено тем, что молекулы воды более прочно связаны друг с другом, чем молекулы других растворителей.

Высокая теплоемкость воды (способность поглощать тепло при незначительном изменении собственной температуры) обеспечивает предохранение клетки от резких колебаний температуры, а такое свойство воды, как высокая теплота испарения, используется живыми организмами для предохранения от перегрева: испарение жидкости растениями и животными является защитной реакцией на повышение температуры. Наличие у воды высокой теплопроводности обеспечивает возможность равномерного распределения теплоты между отдельными частями организма. Вода практически несжимаема, благодаря чему клетки поддерживают свою форму и характеризуются упругостью.

Уникальные свойства воды определяются особенностями структуры ее молекулы, которые возникают в результате специфического расположения электронов в атомах кислорода и водорода, входящих в состав молекулы. Атом кислорода, на внешней электронной орбите которого находится два электрона, объединяет их с двумя электронами атомов водорода (каждый атом водорода имеет на внешней электронной орбите по одному электрону). Вследствие этого между атомом кислорода и двумя атомами водорода образуются две ковалентные связи. Однако более отрицательный атом кислорода стремится притянуть к себе электроны. В результате каждый из атомов водорода приобретает небольшой положительный заряд, а атом кислорода несет на себе отрицательный заряд. Отрицательно заряженный атом кислорода одной молекулы воды притягивается к положительно заряженному атому водорода другой молекулы, что приводит к образованию водородной связи. Таким образом, молекулы воды оказываются связанными друг с другом.

Важным свойством водородной связи является ее меньшая прочность по сравнению с (она примерно в 20 раз слабее ковалентной связи). Поэтому водородные связи относительно легко образуются и легко разрываются. Однако даже при 100° между молекулами воды существует еще достаточно сильное взаимодействие. Наличие водородных связей между молекулами воды обеспечивает ее некоторую структурированность, что объясняет такие ее необычные свойства, как высокая кипения, плавления и высокая теплоемкость.

Еще одним характерным свойством молекулы воды является ее дипольность. Как уже говорилось выше, атомы водорода в молекуле воды несут небольшой положительный заряд, а атомы кислорода - отрицательный. Однако угол связи Н-О-Н составляет 104,5°, поэтому в молекуле воды отрицательный заряд сосредоточен на одной стороне, а положительный заряд - на другой. Дипольность молекулы воды характеризует ее способность ориентироваться в электрическом поле. Именно это свойство воды определяет ее уникальность как растворителя: если в молекулах веществ содержатся заряженные группы атомов, они вступают в электростатические взаимодействия с молекулами воды, и эти вещества растворяются в ней. Такие вещества называются гидрофильными. В клетках имеется большое количество гидрофильных соединений: это соли, низкомолекулярные органические соединения, углеводы, нуклеиновые кислоты. Однако есть ряд веществ, которые почти не содержат заряженных атомов и не растворяются в воде. К этим соединениям относятся, в частности, липиды (жиры). Такие вещества называют гидрофобными. Гидрофобные вещества не взаимодействуют с водой, но хорошо взаимодействуют друг с другом. Липиды, являющиеся гидрофобными соединениями, формируют двумерные структуры (мембраны), почти непроницаемые для воды.

Благодаря своей полярности вода растворяет больше химических веществ, чем любой другой растворитель. Именно в водной среде клетки, где растворены разнообразные химические вещества, осуществляются многочисленные химические реакции, без которых жизнедеятельность невозможна. Вода растворяет также продукты реакций и выводит их из клеток и из многоклеточных организмов. За счет перемещения воды в организмах животных и растений осуществляется обмен различными веществами между тканями.

Одно из важных свойств воды как химического соединения заключается в том, что она вступает во многие химические реакции, протекающие в клетке. Эти реакции называются реакциями гидролиза. В свою очередь молекулы воды образуются в результате многих реакций, протекающих в живых организмах.

Масса атома водорода очень мала, его единственный электрон в молекуле воды удерживается атомом кислорода. Вследствие этого ядро атома водорода (протон) способно отрываться от молекулы воды, в результате чего образуется гидроксильный ион (ОН —) и протон (Н +).

Н 2 O <=> Н + + OH —

Этот процесс называется диссоциацией воды. Гидроксильные и водородные ионы, образующиеся при диссоциации воды, также являются участниками многих важных реакций, протекающих в организме.

Кроме воды важную роль в жизнедеятельности клетки играют растворенные в ней , которые представлены катионами калия, натрия, магния, кальция и других , а также анионами соляной, серной, угольной и фосфорной кислот.

Для многих катионов характерно неравномерное распределение между клеткой и окружающей ее средой: так, в цитоплазме клетки концентрация К+ более высокая, а концентрация Na + и Са 2+ более низкая, чем в окружающей клетку среде. Внешней по отношению к клетке может быть как природная среда (например, океан), так и жидкости организма (кровь), которые по ионному составу близки к морской воде. Неравномерное распределение катионов между клеткой и окружающей средой поддерживается в процессе жизнедеятельности, на это клетка затрачивает значительную часть образующейся в ней энергии. Неравномерное распределение ионов между клеткой и окружающей средой необходимо для осуществления многих важных для жизнедеятельности процессов, в частности для проведения возбуждения по нервным и мышечным клеткам, осуществления сокращения мышц. После смерти клетки концентрация катионов вне клетки и внутри нее быстро выравнивается.

Содержащиеся в клетке анионы слабых кислот (НС0 3 — , НРO 4 2-) играют важную роль для поддержания внутри клетки постоянной концентрации ионов водорода (рН). Несмотря на то, что в процессе жизнедеятельности в клетке образуются как щелочи, так и кислоты, в норме реакция в клетке почти нейтральная. Это обусловлено тем, что анионы слабых кислот могут связывать протоны кислот и гидроксильные ионы щелочей, нейтрализуя таким образом внутриклеточную среду. Кроме того, анионы слабых кислот вступают в химические реакции, осуществляемые в клетке: в частности, анионы фосфорной кислоты необходимы для синтеза столь важного для клетки соединения, как АТФ.

Неорганические вещества содержатся в живых организмах не только в растворенном, но и в твердом состоянии. Например, кости формируются главным образом из фосфата кальция (в меньших количествах в них присутствует и фосфат магния), а раковины - из карбоната кальция.

Органические вещества клетки. Биополимеры

В живых организмах присутствует огромное количество разнообразных соединений, которые практически не встречаются в неживой природе и которые называют органическими соединениями. Каркасы молекул этих соединений построены из атомов углерода. Среди органических соединений можно выделить низкомолекулярные вещества (органические кислоты, их эфиры, аминокислоты, свободные жирные кислоты, азотистые основания и т. д.). Однако основная масса сухого вещества клетки представлена высокомолекулярными соединениями, которые являются полимерами. Полимеры - это соединения, образованные из низкомолекулярных повторяющихся единиц (мономеров), последовательно связанных друг с другом ковалентной связью и образующих длинную цепь, которая может быть как неразветвленной, так и разветвленной. Среди полимеров различают гомополимеры, состоящие из одинаковых мономеров. Если обозначить мономер каким-либо символом, например буквой X, то структуру гомополимера условно можно представить следующим образом: -Х-Х-…-Х-Х. В состав гетерополимеров входят мономеры различной структуры. Если мономеры, входящие в состав гетерополимера, обозначить как X и У, то структура гетерополимера может быть представлена, например, в виде ХХУУХУ…ХХУУХУ. К биополимерам (то есть полимерам, встречающимся в живой природе) относятся белки, нуклеиновые кислоты и углеводы.

Белки

Структура белков . Среди органических соединений, представленных в клетке, основными являются белки: на их долю приходится не менее 50% сухого вещества. В состав всех белков входят углерод, водород, кислород, азот. Кроме того, почти все они содержат серу. В некоторых белках присутствуют также фосфор, железо, магний, цинк, медь, марганец. Так, железо входит в состав белка гемоглобина, находящегося в эритроцитах многих животных, а магний обнаруживается в пигменте хлорофилле, необходимом для осуществления фотосинтеза.

Характерная особенность белков - их большая молекулярная масса: она колеблется в пределах от нескольких тысяч до сотен тысяч и даже миллионов килодальтон. Мономером, то есть структурной единицей любого белка, являются аминокислоты, для которых характерно сходное, но не совсем одинаковое строение.

Как видно из представленной формулы, молекула аминокислоты состоит из двух частей. Та часть, что обведена рамкой, одинакова у всех аминокислот. Она содержит аминогруппу (-NН 2), присоединенную к атому углерода, и следующую далее карбоксильную группу (-СООН). Вторая часть молекулы аминокислоты, изображенная в формуле в виде латинской буквы R, называется боковой цепью, или радикалом. Она имеет разную структуру у различных аминокислот. В качестве структурных элементов (мономеров) в состав белков входит 20 различных аминокислот, таким образом, в белках может встречаться 20 различных по структуре боковых цепей. Боковые радикалы могут быть заряжены отрицательно или положительно, содержать ароматические кольца и гетероциклические структуры, гидрофобные группировки, гидроксильные (-ОН) группы или атомы серы.

В белковых молекулах последовательно расположенные молекулы аминокислот соединяются друг с другом ковалентно, образуя длинные неразветвленные полимерные цепи. Аминокислоты в цепи расположены таким образом, что аминогруппа одной аминокислоты взаимодействует с карбоксильной группой другой. При взаимодействии двух этих групп выделяется молекула воды и образуется пептидная связь. Образовавшееся соединение называется пептидом. Если пептид состоит из двух аминокислот, его называют дипептидом, из трех - трипептидом. Молекулы белка могут содержать сотни и даже тысячи аминокислотных остатков. Таким образом, белки представляют собой полипептиды. Нужно отметить, что белковые молекулы представляют собой не беспорядочно построенные полимеры различной длины - каждая белковая молекула характеризуется определенной последовательностью аминокислот, которая определяется структурой гена, кодирующего данный белок.

Последовательность аминокислотных остатков в молекуле белка определяет его первичную структуру, то есть его формулу. Точно так же, как алфавит, в состав которого входят 33 буквы, позволяет создать огромное количество слов, с помощью 20 аминокислот можно создать почти неограниченное количество белков, различающихся как по количеству входящих в их состав аминокислот, так и по их последовательности. Общее число различных белков, встречающихся у всех видов живых организмов, составляет величину порядка 10 10 -10 12 . Важнейшей задачей современной биологии является определение первичной структуры белков, а также установление зависимости между первичной структурой и функциональной активностью белков. Поскольку последовательность аминокислот задается структурой гена, то первичную структуру белков в настоящее время определяют, выясняя последовательность нуклеотидов в соответствующем гене, используя для этого методы генной инженерии.

Белковая молекула в нативном (неповрежденном) состоянии обладает характерной для нее пространственной структурой, или конформацией. Она определяется тем, как сворачивается полипептидная цепь белка в растворе. Чаще всего отдельные участки полипептидной цепи сворачиваются в спираль (α-спираль) или образуют зигзагообразные структуры, располагающиеся антипараллельно, - так называемый складчатый слой, или β-структура. Образование α-спирали и β-структуры приводит к формированию вторичной структуры белка. При этом боковые цепи аминокислот располагаются с наружной стороны спирали или зигзагообразной структуры. Спиральная структура стабилизируется водородными связями, которые образуются между NH-группами, находящимися на одном витке, и CO-группами, расположенными на другом витке спирали. Эти водородные связи параллельны оси спирали.

Структура типа складчатого слоя также стабилизируется за счет водородных связей, которые образуются между параллельными слоями. Хотя водородные связи слабее ковалентных, присутствие их в значительном количестве делает структуры типа α-спирали или β-складчатого слоя достаточно прочными.

Спиральные участки и структуры типа складчатого слоя подвергаются дальнейшей упаковке, в результате чего формируется третичная структура белка. На этом этапе растворимые белки обычно образуют глобулярную структуру, имеющую вид клубка, в которой заряженные аминокислотные остатки оказываются на поверхности, а гидрофобные аминокислотные остатки - внутри клубка. При этом зачастую сближаются аминокислотные остатки, которые в полипептидной цепи расположены далеко друг от друга. Для каждого белка характерен свой способ упаковки, который задается уже на уровне первичной структуры данного белка, то есть зависит от порядка расположения аминокислот в полипептидной цепи.

Многие белки состоят из нескольких полипептидных цепей одинаковой или различной структуры. При объединении таких цепей образуется сложный белок, для которого характерна четвертичная структура. Такие белки называют олигомерами, а входящие в состав олигомера отдельные полипептидные цепи - мономерами.

Большая часть белковых молекул способна сохранять свою биологическую активность, то есть способность выполнять свойственную им функцию только в узком диапазоне температур и кислотности среды. При повышении температуры или изменении кислотности до экстремальных значений в структуре белков происходят изменения, которые называют денатурацией. Примером денатурации является свертывание белка яйца, наблюдающееся при его варке. При денатурации не происходит разрыва ковалентных связей, но разрушается характерная для данного белка четвертичная, третичная и вторичная структура, в результате чего в денатурированном состоянии полипептидные цепи белков образуют случайные и беспорядочные клубки и петли.

Функции белков . Для белков характерно значительное разнообразие функций. Самую большую и наиболее важную по биологическому значению группу белков составляют белки-ферменты, которые являются катализаторами, ускоряющими протекание различных химических реакций.

Вторая по величине группа белков представлена белками, являющимися структурными элементами клетки. К ним, например, относится фибриллярный белок коллаген, главный структурный белок, входящий в состав соединительной и костной . Другие типы белков являются компонентами сократительных и двигательных систем. Таковы, например, актин и миозин, два главных элемента сократительной системы мышц. Из структурных белков формируется цитоскелет клетки, представляющий собой пучки фибриллярных белков, соединяющих различные органеллы клетки друг с другом и с плазматической мембраной клетки.

Некоторые белки выполняют транспортную функцию, они способны связывать и переносить с током крови различные вещества. Наиболее известным из таких белков является гемоглобин, который находится в эритроцитах позвоночных и, связываясь с кислородом, осуществляет его перенос из легких в ткани. Сывороточные липопротеиды переносят с током крови сложные липиды, а сывороточный альбумин - свободные жирные кислоты.

К транспортным белкам относятся также белки, встроенные в биологические мембраны и осуществляющие перенос различных веществ через эти мембраны. В обычных условиях клеточная мембрана слабо проницаема для таких веществ, как К + , Na + , Са 2+ , поскольку поры, сформированные белками-каналами, закрыты. Однако некоторые воздействия, например электрические импульсы или биологически активные вещества, связывающиеся с каналами, открывают пору, вследствие чего ион, способный проникать через этот канал, перемещается с одной стороны мембраны на другую в направлении уменьшения концентрации. Перемещение ионов в противоположном направлении осуществляется с затратой энергии другими транспортными белками мембраны, называемыми ионными насосами.

В специализированных клетках растений и животных осуществляется синтез специальных регуляторов или гормонов, часть из которых (но не все) являются белками, регулирующими различные физиологические процессы. Наиболее известным из них является, пожалуй, инсулин - гормон, вырабатываемый в поджелудочной железе и регулирующий уровень глюкозы в клетках организма. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет.

Кроме того, белки способны осуществлять защитную функцию. При попадании в организм животных или человека вирусов, бактерий, чужеродных белков или других полимеров в организме происходит синтез специальных защитных белков, которые называют антителами или иммуноглобулинами. Эти белки связываются с чужеродными полимерами. Связывание антител с белками вирусов или бактерий подавляет их функциональную активность и останавливает развитие инфекции. Антитела обладают уникальным свойством: они способны отличать чужеродные белки от собственных белков организма. Такой механизм защиты организма от возбудителей заболеваний называют иммунитетом. Иммунитет к инфекционным заболеваниям можно создать путем инъекции очень небольших количеств некоторых биополимеров, входящих в состав микроорганизмов или вирусов, являющихся возбудителями данной болезни. При этом образуются антитела, которые впоследствии способны защитить организм, если он подвергнется заражению данным микроорганизмом или вирусом. Многие живые существа для обеспечения защиты выделяют белки, называемые токсинами, которые в большинстве случаев являются сильными ядами.

При недостатке питания у животных резко усиливается распад белков до входящих в его состав аминокислот, последние после соответствующих превращений могут использоваться в качестве источника энергии (энергетическая функция белков).

Часть бактерий и все растения способны синтезировать все 20 аминокислот, входящих в состав белков. Однако животные в процессе эволюции потеряли способность синтезировать 10 особо сложных аминокислот, которые они должны получать с растительной и животной пищей. Эти аминокислоты получили название незаменимых. Они входят в состав растительных и животных белков, получаемых с пищей, которые в пищеварительном тракте расщепляются до аминокислот. В клетках из этих аминокислот строятся собственные белки, характерные для данного организма. Отсутствие в пище незаменимых аминокислот вызывает тяжелые нарушения обмена веществ.

И их роль в процессе жизнедеятельности. При той температуре и кислотности среды, которая характерна для клетки, скорость большинства химических реакций невелика. Однако реально в клетке реакции протекают с очень большой скоростью. Это достигается за счет присутствия в клетке специальных катализаторов - ферментов, которые значительно увеличивают скорость химических реакций. Ферменты - самый крупный и специализированный класс белков. Именно ферменты обеспечивают протекание в клетке многочисленных реакций, из которых складывается клеточный обмен веществ. В настоящее время известно более тысячи ферментов. Их каталитическая эффективность необычайно велика: они способны ускорять реакции в миллионы раз.

Каталитическая активность фермента определяется не всей его молекулой, а определенным участком молекулы фермента, который называется его активным центром. Известно, что химический катализ чаще всего осуществляется за счет образования комплекса превращаемого в процессе реакции вещества (субстрата) с катализатором. И в процессе ферментативной реакции субстрат взаимодействует с ферментом, причем связывание субстрата осуществляется именно в активном центре. Для ферментов характерно пространственное соответствие между субстратом и активным центром, они подходят друг к другу, «как ключ к замку». Таким образом, ферменты характеризуются субстратной специфичностью, поэтому каждый фермент обеспечивает протекание одной или нескольких реакций одного типа.

Связывание субстрата с ферментом (образование фермент-субстратного комплекса) сопровождается перераспределением электронного , окружающего превращаемое в процессе реакции вещество (субстрат), за счет взаимодействия с аминокислотами фермента, которые участвуют в формировании активного центра. Вследствие этого отдельные связи между атомами в молекуле субстрата ослабляются и разрушаются значительно легче, чем в растворе. В других случаях (реакции, при которых происходит образование связи) две молекулы субстрата сближаются в активном центре фермента настолько, что между ними легко образуется . При денатурации фермента его каталитическая активность исчезает, так как нарушается структура активного центра.

В состав многих ферментов входят так называемые кофакторы - низкомолекулярные органические или неорганические соединения, способные осуществлять определенные типы реакций. К кофакторам принадлежит, например, динуклеотид НАД (никотинамидадениндинуклеотид), обеспечивающий дегидрирование различных субстратов. Его функции подробно будут рассмотрены в разделе «Энергетический обмен». Известно также большое количество ферментов, в состав которых входят металлы (железо, медь, кобальт, марганец), также участвующие в превращении субстратов в процессе каталитического акта.

Нуклеиновые кислоты

Еще одним важным классом биополимеров являются нуклеиновые кислоты, которые являются носителями генетической , а также принимают участие в процессе синтеза белков. В живой природе обнаружено два типа нуклеиновых кислот, а именно: дезоксирибонуклеиновая кислота (сокращенно ДНК) и рибонуклеиновая кислота (РНК). ДНК и РНК обнаруживаются у всех прокариот и эукариот, исключение составляют вирусы, часть которых содержит только РНК, тогда как другие - только ДНК. ДНК и РНК состоят из мономеров, называемых мононуклеотидами . Мононуклеотиды, входящие в состав ДНК и РНК, обладают сходной, но не одинаковой структурой. Мононуклеотиды состоят из трех основных компонентов: 1) азотистого основания , 2) сахара пентозы и 3) фосфорной кислоты .

Мононуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар дезоксирибозу и одно из четырех азотистых оснований: аденин , гуанин , цитозин и тимин (сокращенно А, Г, Ц и Т).

Мононуклеотиды, входящие в состав РНК, содержат пятиуглеродный сахаррибозу, а также одно из четырех оснований: аденин , гуанин , цитозин и урацил (сокращенно А, Г, Ц и У).

Дезоксирибонуклеиновая кислота (ДНК) . ДНК является носителем генетической информации и сосредоточена в клетке главным образом в ядре, где она является основным компонентом хромосом (у эукариот ДНК обнаруживается также в митохондриях и хлоропластах). ДНК представляет собой полимер, состоящий из ковалентно связанных между собой мононуклеотидов, в состав которых входит дезоксирибоза и четыре азотистых основания (аденин, гуанин, цитозин и тимин). Количество мононуклеотидов, входящих в состав ДНК, очень велико: в клетках прокариот, содержащих единственную хромосому, вся ДНК присутствует в виде одной макромолекулы с молекулярной массой более 2*10 9 .

Структура молекулы ДНК была расшифрована Уотсоном и Криком в 1953 году. Молекула ДНК представляет собой две нити, расположенные параллельно друг другу и формирующие правозакрученную спираль. Ширина спирали составляет около 2 нм, тогда как длина может достигать сотен тысяч нанометров. Мононуклеотиды, входящие в состав одной цепи, последовательно соединяются за счет образования ковалентных связей между дезоксирибозой одного и фосфорной кислотой другого мононуклеотида. Азотистые основания, которые располагаются по одну сторону от образовавшегося остова одной цепи ДНК, формируют водородные связи с азотистыми основаниями второй цепи. Таким образом, в спиральной молекуле двухцепочечной ДНК азотистые основания находятся внутри спирали. Структура спирали такова, что входящие в ее состав полинуклеотидные цепи могут быть разделены только после раскручивания спирали.

Молекула ДНК устроена таким образом, что количество входящих в ее состав азотистых оснований одного типа (аденина и гуанина) равно количеству азотистых оснований другого типа (тимина и цитозина), то есть А+Г=Т+Ц. Это обусловлено размером азотистых оснований: длина структуры, образующейся при формировании водородной связи между парами аденин-тимин и гуанин-цитозин, составляет примерно 11 А. Размеры этих пар соответствуют размеру внутренней части спирали ДНК. Пара А-Г была бы слишком велика, а Ц-Т - мала для формирования спирали. Таким образом, азотистое основание, стоящее в одной цепи ДНК, определяет основание, располагающееся в том же месте другой цепи. Строгое соответствие нуклеотидов, расположенных параллельно друг другу в парных цепочках молекулы ДНК, получило название комплементарности (дополнительности). Именно благодаря этому свойству молекулы ДНК возможно точное воспроизведение (репликация) генетической информации. В клетке репликация (самоудвоение) ДНК происходит в результате разрыва водородных связей между азотистыми основаниями соседних цепей ДНК и последующего синтеза двух новых (дочерних) молекул ДНК с использованием в виде матрицы родительских цепей. Такие реакции были названы реакциями матричного синтеза.

Рибонуклеиновая кислота. РНК представляет собой полимер, состоящий из ковалентно связанных между собой мононуклеотидов, в состав которых входит рибоза и четыре азотистых основания (аденин, гуанин, цитозин и урацил). В клетках существует три разных типа рибонуклеиновых кислот: информационная, или матричная, РНК (иРНК, или мРНК), транспортная РНК (тРНК) и рибосомная РНК (рРНК). Молекулы всех трех типов РНК одноцепочечные. И все они имеют значительно меньшую молекулярную массу, чем молекулы ДНК. В большинстве клеток содержание РНК во много раз (от 5 до 10) выше, чем содержание ДНК. Все три типа РНК необходимы для обеспечения синтеза белка в клетке.

Информационная РНК. Информационная РНК синтезируется в ядре в процессе транскрипции, в ходе которого на одной из цепей ДНК обеспечивается матричный синтез молекулы РНК. Молекула иРНК состоит примерно из 300-30000 нуклеотидов и представляет собой структуру, комплементарную определенному участку одноцепочечной молекулы ДНК (гену). После синтеза иРНК переходит в цитоплазму, где она прикрепляется к рибосомам и используется в качестве матрицы, определяющей последовательность аминокислот в растущей полипептидной цепи. Таким образом, последовательность нуклеотидов в цепи ДНК, а затем и синтезируемой с ее использованием в качестве матрицы иРНК определяет последовательность аминокислот в синтезируемом белке. Каждый из тысяч белков, синтезируемых клеткой, кодируется специфической иРНК.

Транспортная РНК. Функция тРНК состоит в том, чтобы в ходе синтеза белка, осуществляемого на рибосомах, транспортировать к вновь синтезируемой полипептидной цепи определенные аминокислоты. Молекулрная масса тРНК невелика: молекулы содержат от 75 до 90 мононуклеотидов.

Рибосомная РНК. Рибосомная РНК входит в состав рибосом - органелл, с помощью которых осуществляется синтез белка. Молекулы рРНК состоят из 3-5 тысяч мононуклеотидов.

Углеводы

Углеводами, или сахаридами, называются соединения с общей формулой (СН 2 O) п, являющиеся альдегидоспиртами или кетоспиртами. Углеводы подразделяют на моно-, ди- и полисахариды.

Моносахариды, или простые сахара, чаще всего состоят из нити (пентозы) или шести (гексозы) атомов углерода и имеют со-(ггиетственно формулы (СН 2 O) 5 и (СН 2 O) 6 .

Наиболее распространенным простым сахаром является шести углеродный сахар глюкоза, это исходный мономер, из которого построены многие полисахариды. Глюкоза является также главным источником энергии в клетке. Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот и АТФ.

В молекуле дисахаридов объединены два простых сахара. Наиболее известными представителями дисахаридов является сахароза, или пищевой сахар, молекула которого состоит из молекул глюкозы и фруктозы.

Молекулы полисахаридов представляют собой длинные цепи, построенные из многих моносахаридных единиц, причем цепи могут быть как линейными, так и разветвленными. Большинство полисахаридов содержат в качестве мономеров повторяющиеся единицы одного и того же вида или двух чередующихся видов, поэтому они не могут выполнять роль информационных биополимеров.

В живой природе содержится огромное количество углеводов. Это связано в первую очередь с широким распространением двух полисахаридов: крахмала и целлюлозы. Крахмал содержится в больших количествах в растениях. Он является той формой полисахарида, в которой запасается топливо. Целлюлоза - это главный компонент внеклеточных волокнистых и одревесневших растительных тканей. В пищеварительном тракте животных отсутствуют ферменты, способные расщеплять целлюлозу до мономеров. Однако эти ферменты имеются у бактерий, которые обитают в пищеварительном тракте некоторых животных, позволяя им использовать целлюлозу в качестве продукта питания

Полисахариды входят в состав жестких стенок растительных и бактериальных клеток, они являются также составным элементом более мягких оболочек клеток животных. Таким образом, углеводы выполняют в клетке две основные функции: энергетическую и строительную.

Липиды

Липиды представляют собой нерастворимые в воде органические соединения, входящие в состав клеток. Эти вещества могут быть экстрагированы (переведены в растворенное состояние) неполярными растворителями, такими, как хлороформ, бензол или эфир. Известно несколько классов липидов, однако наиболее важную функцию в организме выполняют, по-видимому, фосфолипиды, являющиеся эфирами трехатомного спирта глицерина и фосфорной кислоты. При образовании молекулы фосфолипида две гидроксильные группы глицерина взаимодействуют с высокомолекулярными жирными кислотами, содержащими 16-18 атомов углерода, а одна гидроксильная группа взаимодействует с фосфорной кислотой. Молекулы всех фосфолипидов содержат полярную голову и неполярный хвост, образованный двумя молекулами жирной кислоты. На границе раздела масло-вода молекулы фосфолипидов ориентируются таким образом, что их полярные головы погружаются в воду, а гидрофобные хвосты - в масло. По поверхности воды фосфолипиды растекаются в виде монослоя, в котором жирно-кислотные хвосты ориентированы в сторону относительно гидрофобного воздуха, а заряженные головы направлены в сторону водной среды.

Молекулы фосфолипидов способны формировать двумерные структуры, которые получили название бислоя: бислой образован из двух монослоев фосфолипидов, ориентированных относительно друг друга так, что гидрофобные хвосты фосфолипидов располагаются внутри бислоя, а полярные головы направлены наружу. Такой бислой характеризуется очень высоким электрическим сопротивлением. Именно бислои, состоящие из фосфолипидов, являются важнейшим компонентом биологических мембран. Биологические мембраны представляют собой природные пленки толщиной 5-7 нм, сформированные бислоем фосфолипидов, содержащим белковые молекулы. Таким образом, липиды выполняют в клетке строительную функцию.

Кроме того, липиды являются важным источником энергии-. при полном превращении в клетке 1 г липидов в воду и углекислый газ выделяется примерно в 2 раза больше энергии, чем при таком же превращении углеводов. Накапливаемый в подкожной клетчатке жир является хорошим теплоизолирующим материалом. Кроме того, липиды являются источником воды, которая в значительных количествах выделяется при их окислении. Именно поэтому многие животные, запасающие жиры (например, верблюды во время переходов по пустыне, медведи, сурки, суслики во время спячки), могут длительное время обходиться без воды.

Некоторые вещества, относящиеся к липидам, обладают высокой биологической активностью: это ряд витаминов, например витамины А и Б, а также некоторые гормоны (стероидные). Важную функцию в организме животных выполняет холестерин, являющийся компонентом клеточных мембран: неправильный обмен холестерина у людей приводит к возникновению атеросклероза - заболевания, при котором холестерин откладывается в виде бляшек на стенках кровеносных сосудов, сужая их просвет. Это приводит к нарушению кровоснабжения органов и является причиной таких тяжелых се рдечнососудистых заболеваний, как инсульт или инфаркт миокарда.

Основные свойства и уровни организации живой природы

Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни:

Молекулярно-генетический - отдельные биополимеры (ДНК, РНК, белки);

Клеточный - элементарная самовоспроизводящаяся единица жизни (прокариоты, одноклеточные эукариоты), ткани, органы;

Организменный - самостоятельное существование отдельной особи;

Популяционно-видовой - элементарная эволюционирующая единица - популяция;

Биогеоценотический - экосистемы, состоящие из разных популяций и среды их обитания;

Биосферный - все живое население Земли, обеспечивающее круговорот веществ в природе.

Природа - это весь существующий материальный мир во всем многообразии его форм. Единство природы проявляется в объективности ее существования, общности элементного состава, подчиненности одним и тем же физическим законам, в системности организации. Различные природные системы, как живые, так и неживые, взаимосвязаны и взаимодействуют между собой. Примером системного взаимодействия является биосфера.

Биология - это комплекс наук, изучающих закономерности развития и жизнедеятельности живых систем, причины их многообразия и приспособленности к окружающей среде, взаимосвязь с другими живыми системами и объектами неживой природы.

Объектом исследования биологии является живая природа.

Предметом исследования биологии являются:

Общие и частные закономерности организации, развития, обмена веществ, передачи наследственной информации;

Разнообразие форм жизни и самих организмов, а также их связи с окружающей средой.

Все многообразие жизни на Земле объясняется эволюционным процессом и действием окружающей среды на организмы.

Сущность жизни определяется М.В. Волькенштейном как существование на Земле «живых тел, представляющих собой открытые саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров - белков и нуклеиновых кислот».

Основные свойства живых систем:

Обмен веществ;

Саморегуляция;

Раздражимость;

Изменчивость;

Наследственность;

Размножение;

Химический состав клетки. Неорганические вещества клетки

Цитология - наука, изучающая строение и функции клеток. Клетка является элементарной структурной и функциональной единицей живых организмов. Клеткам одноклеточных организмов присущи все свойства и функции живых систем. Клетки многоклеточных организмов дифференцированы по строению и функциям.

Атомный состав: в состав клетки входит около 70 элементов Периодической системы элементов Менделеева, причем 24 из них присутствуют во всех типах клеток.

Макроэлементы - Н, О, N, С, микроэлементы - Mg, Na, Са, Fe, К, Р, CI, S, ультрамикроэлементы - Zn, Сu, I, F, Мn, Со, Si и др.

Молекулярный состав: в состав клетки входят молекулы неорганических и органических соединений.

Неорганические вещества клетки

Вода. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами образуются водородные связи, определяющие физические и химические свойства воды.

Рис. 1. Молекула воды Рис. 2. Водородные связи между молекулами воды

Физические свойства воды:

Вода может находиться в трех состояниях - жидком, твердом и газообразном;

Вода - растворитель. Полярные молекулы воды растворяют полярные молекулы других веществ. Вещества, растворимые в воде, называют гидрофильными. Вещества, не растворимые в воде, - гидрофобными;

Высокая удельная теплоемкость. Для разрыва водородных связей, удерживающих молекулы воды, требуется поглотить большое количество энергии. Это свойство воды обеспечивает поддержание теплового баланса в организме;

Высокая теплота парообразования. Для испарения воды необходима достаточно большая энергия. Температура кипения воды выше, чем у многих других веществ. Это свойство воды предохраняет организм от перегрева;

Молекулы воды находятся в постоянном движении, они сталкиваются друг с другом в жидкой фазе, что немаловажно для процессов обмена веществ;

Сцепление и поверхностное натяжение. Водородные связи обусловливают вязкость воды и сцепление ее молекул с молекулами других веществ (когезия). Благодаря силам сцепления молекул на поверхности воды создается пленка, которую характеризует поверхностное натяжение;

Плотность. При охлаждении движение молекул воды замедляется. Количество водородных связей между молекулами становится максимальным. Наибольшую плотность вода имеет при 4°С. Замерзая, вода расширяется (необходимо место для образования водородных связей), и ее плотность уменьшается, поэтому лед плавает на поверхности воды, что защищает водоем от промерзания;

Способность к образованию коллоидных структур. Молекулы воды образуют вокруг нерастворимых молекул некоторых веществ оболочку, препятствующую образованию крупных частиц. Такое состояние этих молекул называется дисперсным (рассеянным). Мельчайшие частицы веществ, окруженные молекулами воды, образуют коллоидные растворы (цитоплазма, межклеточные жидкости).

Биологические функции воды:

Транспортная - вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам;

Метаболическая - вода является средой для всех биохимических реакций и донором электронов при фотосинтезе, она необходима для гидролиза макромолекул до их мономеров;

Участвует в образовании:

1) смазывающих жидкостей, которые уменьшают трение (синовиальная - в суставах позвоночных животных, плевральная, в плевральной полости, перикардиальная - в околосердечной сумке);

2) слизей, которые облегчают передвижение веществ по кишечнику, создают влажную среду на слизистых оболочках дыхательных путей;

3) секретов (слюна, слезы, желчь, сперма и т.д.) и соков в организме.

Неорганические ионы. Неорганические ионы клетки представлены: катионами К+, Na+, Са2+, Mg2+, NH3 и анионами Сl-, NOi2-, H2PO4-, HCO3-, HPO42-.

Разность между количеством катионов и анионов на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения.

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6-9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 4-7.

Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот. Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих. Ионы кальция входят в состав вещества костей, они также необходимы для осуществления мышечного сокращения, свертывания крови.

В состав клетки входит около 70 элементов Периодической системы элементов Менделеева, а 24 из них присутствуют во всех типах клеток. Все присутствующие в клетке элементы делятся, в зависимости от их содержания в клетке, на группы :

    • макроэлементы – H, O, N, C,. Mg, Na, Ca, Fe, K, P, Cl, S;
    • микроэлементы – В, Ni, Cu, Co, Zn, Mb и др.;
    • ультрамикроэлементы – U, Ra, Au, Pb, Hg, Se и др.
  • органогены (кислород, водород, углерод, азот),
  • макроэлементы,
  • микроэлементы.

В состав клетки входят молекулы неорганических и органических соединений.

Неорганические соединения клетки вода и неорганические ионы.
Вода – важнейшее неорганическое вещество клетки. Все биохимические реакции происходят в водных растворах. Молекула воды имеет нелинейную пространственную структуру и обладает полярностью. Между отдельными молекулами воды образуются водородные связи, определяющие физические и химические свойства воды.

Физические свойства воды

Значение для биологических процессов

Высокая теплоемкость (из-за водородных связей между молекулами) и теплопроводность (из-за небольших размеров молекул)

Транспирация
Потоотделение
Периодическое выпадение осадков

Прозрачность в видимом участке спектра

Высокопродуктивные биоценозы прудов, озер, рек (из-за возможности фотосинтеза на небольшой глубине)

Практически полная несжимаемость (из-за сил межмолекулярного сцепления)

Поддержание формы организмов: форма сочных органов растений, положение трав в пространстве, гидростатический скелет круглых червей, медуз, амниотическая жидкость поддерживает и защищает плод млекопитающих

Подвижность молекул (из-за слабости водородных связей)

Осмос: поступление воды из почвы; плазмолиз

Вязкость (водородные связи)

Смазывающие свойства: синовиальная жидкость в суставах, плевральная жидкость

Растворитель (полярность молекул)

Кровь, тканевая жидкость, лимфа, желудочный сок, слюна, у животных; клеточный сок у растений; водные организмы используют растворенный в воде кислород

Способность образовывать гидратационную оболочку вокруг макромолекул (из-за полярности молекул)

Дисперсионная среда в коллоидной системе цитоплазмы

Оптимальное для биологических систем значение сил поверхностного натяжения (из-за сил межмолекулярного сцепления)

Водные растворы – средство передвижения веществ в организме

Расширение при замерзании (из-за образования каждой молекулой максимального числа – 4 – водородных связей_

Лед легче воды, выполняет в водоемах функцию теплоизолятора

Неорганические ионы :
катионы K+, Na+, Ca2+ , Mg2+ и анионы Cl–, NO3- , PO4 2-, CO32-, НPO42-.

Разность между количеством катионов и анионов (Nа+ , К+ , Сl-) на поверхности и внутри клетки обеспечивает возникновение потенциала действия, что лежит в основе нервного и мышечного возбуждения .
Анионы фосфорной кислоты создают фосфатную буферную систему , поддерживающую рН внутриклеточной среды организма на уровне 6-9.
Угольная кислота и ее анионы создают бикарбонатную буферную систему и поддерживают рН внеклеточной среды (плазмы крови) на уровне 7-4.
Соединения азота служат источником минерального питания, синтеза белков, нуклеиновых кислот.
Атомы фосфора входят в состав нуклеиновых кислот, фосфолипидов, а также костей позвоночных, хитинового покрова членистоногих.
Ионы кальция входят в состав вещества костей; они также необходимы для осуществления мышечного сокращения, свертывания крови.

Таблица. Роль макроэлементов на клеточном и организменном уровне организации.

Таблица.

Тематические задания

Часть А

А1. Полярностью воды обусловлена ее способность
1) проводить тепло
3) растворять хлорид натрия
2) поглощать тепло
4) растворять глицерин

А2 . Больным рахитом детям необходимо давать препараты, содержащие
1) железо
2) калий
3) кальций
4) цинк

А3 . Проведение нервного импульса обеспечивается ионами:
1) калия и натрия
2) фосфора и азота
3) железа и меди
4) кислорода и хлора

А4 . Слабые связи между молекулами воды в ее жидкой фазе называются:
1) ковалентными
2) гидрофобными
3) водородными
4) гидрофильными

А5 . В состав гемоглобина входит
1) фосфор
2) железо
3) сера
4) магний

А6 . Выберите группу химических элементов, обязательно входящую в состав белков
1) Na, K, O, S
2) N, P, C, Cl
3) C, S, Fe, O
4) C, H, O, N

А7 . Пациентам с гипофункцией щитовидной железы дают препараты, содержащие
1) йод
2) железо
3) фосфор
4) натрий

Часть В

В1 . Выберите функции воды в клетке
1) энергетическая
2) ферментативная
3) транспортная
4) строительная
5) смазывающая
6) терморегуляционная

В2 . Выберите только физические свойства воды
1) способность к диссоциации
2) гидролиз солей
3) плотность
4) теплопроводность
5) электропроводность
6) донорство электронов

Часть С

С1 . Какие физические свойства воды определяют ее биологическое значение?

Клетка

С точки зрения концепции живых систем по А. Ленинджеру.

    Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.

    В клетке протекает большое количество последовательных реакций, скорость которых регулируется самой клеткой.

    Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.

    Клетки функционируют по принципу минимального расхода компонентов и процессов.

Т.о. клетка – элементарная живая открытая система, способная к самостоятельному существованию, воспроизведению и развитию. Она является элементарной структурно-функциональной единицей всех живых организмов.

Химический состав клеток.

Из 110 элементов периодической системы Менделеева в организме человека обнаружено 86 постоянно присутствующих. 25 из них необходимы для нормальной жизнедеятельности, причем 18 из них необходимы абсолютно, а 7 - полезны. В соответствии с процентным содержанием в клетке химические элементы делят на три группы:

    Макроэлементы Основные элементы (органогены) – водород, углерод, кислород, азот. Их концентрация: 98 – 99,9 %. Они являются универсальными компонентами органических соединений клетки.

    Микроэлементы – натрий, магний, фосфор, сера, хлор, калий, кальций, железо. Их концентрация 0,1%.

    Ультрамикроэлементы – бор, кремний, ванадий, марганец, кобальт, медь, цинк, молибден, селен, йод, бром, фтор. Они влияют на обмен веществ. Их отсутствие является причиной заболеваний (цинк - сахарный диабет, иод - эндемический зоб, железо - злокачественная анемия и т.д.).

Современной медицине известны факты отрицательного взаимодействия витаминов и минералов:

    Цинк снижает усвоение меди и конкурирует за усвоение с железом и кальцием; (а дефицит цинка вызывает ослабление иммунной системы, ряд патологических состояний со стороны желез внутренней секреции).

    Кальций и железо снижают усвоение марганца;

    Витамин Е плохо совмещается с железом, а витамин С – с витаминами группы В.

Положительное взаимовлияние:

    Витамин Е и селен, а также кальций и витамин К действуют синергично;

    Для усвоения кальция необходим витамин Д;

    Медь способствует усвоению и повышает эффективность использования железа в организме.

Неорганические компоненты клетки.

Вода – важнейшая составная часть клетки, универсальная дисперсионная среда живой материи. Активные клетки наземных организмов состоят на 60 – 95% из воды. В покоящихся клетках и тканях (семена, споры) воды 10 - 20%. Вода в клетке находится в двух формах – свободной и связанной с клеточными коллоидами. Свободная вода является растворителем и дисперсионной средой коллоидной системы протоплазмы. Ее 95%. Связанная вода (4 – 5 %) всей воды клетки образует непрочные водородные и гидроксильные связи с белками.

Свойства воды:

    Вода – естественный растворитель для минеральных ионов и других веществ.

    Вода – дисперсионная фаза коллоидной системы протоплазмы.

    Вода является средой для реакций метаболизма клетки, т.к. физиологические процессы происходят в исключительно водной среде. Обеспечивает реакции гидролиза, гидратации, набухания.

    Участвует во многих ферментативных реакциях клетки и образуется в процессе обмена веществ.

    Вода – источник ионов водорода при фотосинтезе у растений.

Биологическое значение воды:

    Большинство биохимических реакций идет только в водном растворе, многие вещества поступают и выводятся из клеток в растворенном виде. Это характеризует транспортную функцию воды.

    Вода обеспечивает реакции гидролиза – расщепление белков, жиров, углеводов под действием воды.

    Благодаря большой теплоте испарения происходит охлаждение организма. Например, потоотделение у человека или транспирация у растений.

    Большая теплоемкость и теплопроводность воды способствует равномерному распределению тепла в клетке.

    Благодаря силам адгезии (вода – почва) и когезии (вода – вода) вода обладает свойством капиллярности.

    Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), гидростатический скелет у круглых червей.

Вверх